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Abstract: This article proposes a novel integral geometric control attitude tracking scheme, utilizing a
coordinate-free representation of attitude on the Lie group of rigid body rotations, SO(3). This scheme
exhibits almost global asymptotic stability in tracking a reference attitude profile. The stability and
robustness properties of this integral tracking control scheme are shown using Lyapunov stability
analysis. A numerical simulation study, utilizing a Lie Group Variational Integrator (LGVI), verifies
the stability of this tracking control scheme, as well as its robustness to a disturbance torque. In
addition, a numerical comparison study shows the effectiveness of the proposed geometric integral
term, when compared to other state-of-the-art attitude controllers. In addition, software-in-the-loop
(SITL) simulations show the advantages of utilizing the proposed attitude controller in PX4 autopilot
compared to using PX4’s original attitude controller.

Keywords: Lyapunov stability; Lie groups; nonlinear control; geometric attitude control

1. Introduction

Classical PID (Proportional-Integral-Derivative) control schemes are widely used in
practice and have several applications due to their ease of design and tunable properties.
PID controllers create a control input based on a tracking error, which is the difference
between the actual output and a desired (reference) output. The control input has three
terms: one proportional to the error, one proportional to the time integral of the error,
and another term proportional to the time derivative of the error. Using PID feedback has
the advantage of eliminating steady-state errors by using an integral term [1]. In addition,
when the mathematical model of a plant is not known and hence analytical design methods
cannot be used, PID controllers prove to be very useful [2]. The popularity of PID controllers
can be attributed partly to their good performance in a wide range of operating conditions
and partly to their functional simplicity [3]. PID control schemes have been proposed for
rigid body attitude tracking by utilizing local coordinates or quaternions, such as the ones
in [4–7]. However, local coordinate descriptions suffer from singularities while attitude
control based on continuous feedback of quaternions suffers from unwinding if antipodal
quaternion pairs are not identified [8]. Unwinding occurs when in response to certain initial
conditions, a closed-loop trajectory undergoes a homoclinic-like orbit that initiates near
the desired attitude equilibrium. For more details on unwinding and its adverse effects on
attitude control, see [8–10].

Geometric mechanics is the study of mechanical systems evolving on (non-Euclidean)
configuration manifolds. This approach results in preserving the geometry of the config-
uration space without requiring local coordinates or parameters. It is worth noting that
the dynamics of mechanical systems are defined on the tangent space of the configura-
tion manifold. An early work extending classical PD (Proportional-Derivative) control to
mechanical systems evolving on configuration manifolds is [11], where PD-type control
was used to stabilize a desired configuration. In subsequent years, others have proposed
various geometric PD-type controllers, such as in [12–16]. In [17], a geometric adaptive
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PD-type controller utilizing neural networks is shown to compensate for unknown dynam-
ics resulting from wind disturbance. The authors used a neural network to alleviate the
impact of wind disturbances by adjusting the weights of the neural network according
to an adaptive control law. Another adaptive controller for vertical take-off and landing
(VTOL) unmanned aerial vehicles (UAVs) is proposed in [18], in which authors address
gyro-bias, unknown inertia, and actuator loss if effectiveness. Another approach to tackle
the attitude control problem is utilizing sliding mode control, however, that can result in
chattering [19] and structural vibrations [20].

For bounded parameter errors or disturbances, a geometric PD controller can guar-
antee global boundedness of tracking errors, although they might not converge to zero.
By choosing sufficiently large PD gains, the errors can be made arbitrarily small. However,
this can result in amplifying undesirable noise, saturating actuators, and requiring large
control effort. Overcoming these drawbacks, along with adding robustness, motivates
adding a geometric integral term to a PD-type controller.

Research on integral geometric control includes [21], in which the authors consider
control of a mechanical system on a Lie group. They propose an integral action, evolving
on the Lie group, to compensate for the drift resulting from a constant bias in velocity
and torque inputs. However, they assume a constant time-invariant bias and only discuss
feedback stabilization and not the feedback tracking problem. The work in [22] defines an
integral term by putting the derivative of integral error equal to the intrinsic gradient of
the error function plus a velocity error term. However, as the derivative of the integral term
is not on the tangent space, the integrator is not intrinsic. Therefore, the integrator depends
on the coordinates chosen for the Lie algebra of the Lie group, unlike the intrinsic PID
controller proposed in [23]. A more recent work [24] considers the tracking problem and
proposes a geometric PID controller for a rigid body with internal rotors. This builds on
the previous PID controller designed in [23], where it is shown that an intrinsic (geometric)
integral action ensures that tracking errors converge to zero, in response to constant velocity
commands. Following up on this work, Ref. [24] develops an intrinsic PID controller
on SO(3) for attitude tracking applications, where SO(3) is the Lie group of rigid body
orientations (attitudes) in three-dimensional Euclidean space [25]. Note that [23,24] have
used a Morse–Bott function in the geometric PID tracking controller designs that give
a connected set of equilibria for the tracking error dynamics, whereas we use a Morse
function that leads to a set of four disjoint equilibria in the state space for the attitude and
angular velocity tracking errors. This means that the proposed controller in this work has a
larger domain of attraction for the desired equilibrium than that of [23,24].

Another application utilizing an integral controller is given in [26], where a quadrotor
UAV carrying a cable-suspended rigid body is controlled. This work shows how, without
an integral term, uncertainties can result in significant deviations for the suspended rigid
body in tracking its desired path. Another application of integral control is presented
in [27], where multivariable infinite-dimensional systems are dealt with. However, that
work only considers linear systems.

The integral geometric control and tracking algorithm proposed here can work in
conjunction with attitude estimators such as the one presented in [25], in which nonlinear
stochastic estimators on SO(3) with systematic convergence are discussed. Our proposed
algorithm can also work in conjunction with trajectory generation algorithms as in [28–35],
and UAV safety frameworks as in [36–38]. A trajectory generated by any of these methods
can be considered as the desired trajectory to be tracked by the algorithm presented in this
paper. The two main contributions of this work are: (1) proposing a new nonlinear integral
geometric attitude controller that includes a geometric integral term and proving it to be
asymptotically stable with an almost global domain of convergence; and (2) providing an
analytical proof of robustness to disturbance torques that is confirmed through supporting
numerical simulation results. The results of this paper can be generalized to other Lie
groups, however, that is currently out of the scope of this project.
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This paper is organized as follows. Section 2 formulates the problem by introducing
coordinate frames used, reference attitude trajectory, and attitude dynamics. Section 3
discusses tracking error kinematics and dynamics. Section 4 proposes the integral geometric
controller, along with its stability proof. It also shows the robustness of the controller to
persistent but norm-bounded disturbance torques. Section 5 provides two simulations
to show the validity of the purposed control scheme. For the first one, a Lie Group
Variational Integrator (LGVI) for discretization and numerical simulation of this integral
geometric controller, comparison with a geometric PD type controller, and discussion of
the disturbance-free case are shown. The second simulation is the SITL simulation, with a
more detailed model and carried out in a more realistic simulation environment. Finally,
Section 7 provides concluding remarks and lists some directions for future work.

2. Problem Formulation and Preliminaries

The treatment in this paper is general and can be applied to vehicles whose motion
can be modeled as rigid bodies in three-dimensional Euclidean space, e.g., spacecraft,
unmanned underwater vehicles, and unmanned aerial vehicles.

2.1. Coordinate Frames

The two coordinate systems used to define the attitude of a rigid body are an inertial
coordinate system and a body-fixed coordinate system. The attitude of the vehicle is
defined as the rotation from the body-fixed frame to the inertial frame and is denoted
R ∈ SO(3). For attitude tracking, we also define a desired attitude trajectory in time,
denoted Rd(t) ∈ SO(3). In addition, we denote by Ω ∈ R3 the angular velocity of the body,
while Ωd ∈ R3 denotes the desired angular velocity. Rd and Ωd are related through the
kinematics equation:

Ṙd = Rd (Ωd)
×

,

where the cross map:(·)× : R3 → so(3) is given by [39]:

x× =

x1
x2
x3

× =

 0 −x3 x2
x3 0 −x1
−x2 x1 0

.

The notation (.)× is also used to denote the cross product, i.e., y×z = y× z for any
y, z ∈ R3.

2.2. Reference Attitude Generation

The desired attitude trajectory for the rigid body is assumed to be generated and
available a priori. As an example, for rotorcraft UAVs, the desired attitude trajectory can be
generated from the position trajectory, by using the known dynamics model and actuation.
Let J denote the inertia of a rigid body. The rotational kinematics and dynamics of the rigid
body under the action of a control input torque τ ∈ R3, respectively, are given by:

Ṙ = R Ω×, (1)

JΩ̇ = JΩ×Ω + τ. (2)

The state space, denoted by TSO(3) ≈ SO(3)× R3, is the tangent bundle of SO(3).
The rigid body rotational equations of motion are expressed by Equations (1) and (2).

3. Tracking Error Kinematics and Dynamics on TSO(3)

The attitude tracking error is defined by [39]:

Q = (Rd)TR. (3)
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Taking the time derivative results in:

Q̇ = (Ṙd)TR + (Rd)TṘ = (Rd(Ωd)
×
)TR + (Rd)TRΩ×

= (Rd)TRΩ× − (Ωd)
×
(Rd)TR = QΩ× − (Ωd)

×
Q

= Q(Ω−QTΩd)× = Qω×,

(4)

where ω = Ω−QTΩd is the body angular velocity tracking error. As a result,

JΩ̇ = J
d
dt
(ω + QTΩd) = J(ω̇ + Q̇TΩd + QTΩ̇d)

= J(ω̇ + (Qω×)
T

Ωd + QTΩ̇d)

= J(ω̇ + QTΩ̇d −ω×QTΩd) (5)

Figure 1 shows a schematic of tracking errors for a quadrotor UAV model, as the
difference between the desired trajectory and actual trajectory. In this figure, b̃ denotes
position tracking error and ṽ denotes translational velocity tracking error, both defined in
the inertial frame.

Figure 1. Tracking errors.

4. Main Result

In this section, the proposed control law and its stability analysis are presented,
followed by an analysis of its robustness to a bounded but persistent disturbance torque.

4.1. Torque Control Law and Stability Analysis

First, we present a lemma that will be used in the proof of the main result.

Lemma 1. Let 〈X, Y〉 denote tr(XTY) and e1, e2, e3 be the unit vectors denoting the standard
basis vector in R3, respectively. Let I denote the 3× 3 identity matrix and K be:

K =

k1 0 0
0 k2 0
0 0 k3

 where ki are distinct positive scalars,

and define U (Q) = 〈K, I −Q〉 and SK(Q) as:

SK(Q) =
3

∑
i=1

ki(QTei)× ei. (6)

Then d
dtU (Q) = ωTSK(Q) and U (Q) is a Morse function on SO(3).
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Lemma 2. The critical points of U (Q), as defined in Lemma 1, are given by SK(Q) = 0. These
critical points are non-degenerate, and given by the set:

C = {I = diag([1, 1, 1]), diag([−1,−1, 1]), diag([1,−1,−1]),

diag([−1, 1,−1])}. (7)

Furthermore, U (Q) has a global minimum at Q = I.

The proofs of Lemmas 1 and 2 are given in [40] and are omitted here for brevity. Note
that the only assumption for designing the attitude controller is constant inertia parameters
of the UAV.

Theorem 1. Let kP, kD, kI ∈ R+ denote proportional, derivative, and integral feedback gains,
respectively, with kD > kI , and let SK(Q) be defined as in Lemma 1. Let FI ∈ R3 ' so(3) be an
integral error term given by:

JḞI = kpSK(Q) + kDω + JΩ× FI , FI(0) = 0. (8)

Considering the attitude kinematics and dynamics of a rigid body as given by Equations (1) and (2),
the control law:

τ =− kPSK(Q)− kI FI − kDω

+ J(QTΩ̇d −ω×QTΩd)− JΩ × QTΩd, (9)

leads to almost global asymptotically stable (AGAS) tracking of (Rd, Ωd), where (Q, ω) are tracking
errors given by (3) and (4).

Note that AGAS is defined in the following proof.

Proof. By replacing JΩ̇ expression from Equation (2) into Equation (5) we get:

Jω̇ = JΩ×Ω + J(ω×QTΩd −QTΩ̇d) + τ. (10)

The closed-loop feedback dynamics is obtained from substituting the proposed con-
troller τ given by (9) into (10), to get:

Jω̇ = JΩ×ω− kPSK(Q)− kI FI − kDω. (11)

Note that the control torque τ in Equation (9) is carefully designed such that when we
replace it in Equation (10), we get Equation (11). As a result of Equation (11), we get:

ωT Jω̇ = −kPωTSK(Q)− kIω
TFI − kDωTω. (12)

Now let V : SO(3)×R3 ×R3 → R+ be a Lyapunov candidate given by:

V = V̄ + kpU (Q), (13)

where

V̄ =
1
2

{
ωT Jω + (FI + ω)T J(FI + ω)

}
. (14)

Note that by Lemmas 1 and 2, U (Q) is a Morse function on SO(3), and therefore V is a
candidate Morse–Lyapunov function on SO(3)×R3 ×R3. Taking the time derivative of V
in Equation (13) and applying Lemma 1, we get:

V̇ = ˙̄V + kpωTSK(Q). (15)
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The time derivative of V̄ in Equation (14) is obtained as:

˙̄V = ωT Jω̇ + (FI + ω)T J(ḞI + ω̇), (16)

where Jω̇ is as expressed in Equation (11), and JḞI as in Equation (8). Note that FI
in Equation (8) is thoughtfully proposed such that when we replace JḞI in Equation (16), V̇
becomes as shown in Equation (17). Using Equation (12) and substituting Equation (16) in (15),
after some simplifications we get:

V̇ = −kDωTω− 2kIω
TFI − kI FT

I FI . (17)

By setting kD = kI + kDI where kDI > 0, we get:

V̇ = −kDIω
Tω− kI(FI + ω)T(FI + ω) ≤ 0, (18)

which is negative semi-definite. Considering Equation (18), the set where V̇ = 0 is:

V̇−1(0) ={(Q, ω, FI) : (FI + ω) = 0 and ω = 0}
={(Q, ω, FI) : FI = 0 and ω = 0}. (19)

Using the invariance-like theorem 8.4 in [41], we can conclude that as t→ ∞, (Q, ω, FI)
converges to the set:

S = {(Q, ω, FI) : FI = 0 , ω = 0 and SK(Q) = 0}. (20)

From Lemma 2, this is equivalent to:

S = {(Q, ω, FI) : FI = 0 , ω = 0 and Q ∈ C}. (21)

This means that the closed-loop system given by Equations (4), (8), and (11) has
S ⊂ SO(3)×R3 ×R3 as its set of equilibria to which all initial tracking error states ulti-
mately converge. The only stable equilibrium in S is (I, 0, 0) ∈ SO(3)× R3 × R3 while
the other three are unstable hyperbolic equilibria, which differ from the stable attitude
by 180◦ of rotation about each of the three body-fixed axes. As shown in [8,39,42], these
unstable equilibria have stable manifolds that are embedded subsets of SO(3)×R3 ×R3.
Therefore, the union of these stable manifolds has measure zero and is nowhere dense in
SO(3)×R3 ×R3. This implies that all solutions that converge to the three unstable equi-
libria lie in a nowhere dense set, whereas almost all closed-loop solutions converge to the
desired equilibrium (Q, ω, FI) = (I, 0, 0). Therefore, the tracking errors (Q, ω) converge to
(I, 0) in an asymptotically stable manner from almost all initial conditions. As convergence
to this desired tracking error state of the feedback attitude dynamics occurs from almost all
initial states except those in a set of zero measure in the state space of rigid-body attitude
motion, its stability is almost global with this continuous integral, geometric type state
feedback control law. This means that the proposed control law in Equations (8) and (9)
leads to almost global asymptotically stable tracking of the desired attitude trajectory
(Rd, Ωd). �

Note that global attitude stabilization with continuous feedback is not possible due to
the non-contractible nature of the compact manifold SO(3) [8,9]. The almost global domain
of convergence of the tracking errors (Q, ω) to (I, 0) given by the above result is the largest
that can be achieved with continuous state feedback. Further, note that the use of the
Morse function leads to a set of four disjoint equilibria in the state space for the attitude
and angular velocity tracking errors, SO(3)× R3 3 (Q, ω), according to Lemma 2 and
Theorem 1. This in turn leads to a larger domain of attraction for the desired equilibrium
than that obtained by using a Morse–Bott function in the geometric PID tracking controller
designs in [23,24], which give a connected set of equilibria for the tracking error dynamics.
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4.2. Robustness to Disturbance Torque

The stability result of Theorem 1 guarantees almost global asymptotic convergence
of the tracking errors (Q, ω) to (I, 0) when there is no disturbance. In the presence of a
bounded disturbance torque D, tracking errors can be shown to converge to a bounded
neighborhood of (I, 0). Theorem 2 gives a specific relation between the size of the neighbor-
hood of (0, 0) to which the tracking errors (ω, FI) are guaranteed to converge and the bound
on the magnitude of the disturbance torque D. Then Corollary 1 shows that, under an
additional assumption on the time derivative of D, the attitude tracking error Q ∈ SO(3)
converges to a neighborhood of the identity.

Theorem 2. Consider the neighborhood of (0, 0) ∈ R3 ×R3 defined by

N̄(0,0) := {‖ω‖ ≤ ωmax and ‖FI + ω‖ ≤ ζmax}, (22)

where ωmax is the upper bound on ‖ω‖ and ζmax is the upper bound on ‖FI + ω‖. Let D be a
disturbance torque that is bounded in norm by

‖D‖ ≤ kDI ωmax
2 + kI ζmax

2

ωmax + ζmax
, (23)

perturbing the attitude dynamics given by Equation (2) as follows:

JΩ̇ = JΩ×Ω + τ + D. (24)

Then, with the control law given by Equation (9), the tracking error signals (ω, FI) converge
to the neighborhood N̄(0,0) defined by (22) in an asymptotically stable manner.

Proof. Considering the perturbed dynamics (24) and following similar steps as in the proof
of Theorem 1, it can be verified that for this perturbed system:

V̇ = −kDIω
Tω− kI(FI + ω)T(FI + ω) + (2ω + FI)

TD. (25)

The (2ω + FI)
TD term is upper bounded by

‖(2ω + FI)‖ ‖D‖ ≤
(
‖ω‖+ ‖ω + FI‖

)
‖D‖,

and hence, V̇ is upper bounded by

V̇ ≤ −kDI ‖ω‖2 − kI ‖FI + ω‖2 +
(
‖ω‖+ ‖ω + FI‖

)
‖D‖. (26)

Consequently, V̇ is guaranteed to be negative semi-definite along the boundary of
N̄(0,0) if

−kDI ωmax
2 − kI ζmax

2 +
(

ωmax + ζmax

)
‖D‖ ≤ 0, (27)

which gives the sufficient condition in Equation (23) for asymptotic convergence of (ω, FI)
to the neighborhood N̄(0,0). Note that this neighborhood is continuous, compact, and con-
nected, and outside this neighborhood V̇ is negative. The size of this neighborhood is given
by (22). �

While the above result shows asymptotic stability of only the error states
(ω, FI) ∈ R3 × R3, it does not show that the attitude error Q in SO(3) converges to a
neighborhood of the identity matrix. To show the convergence of the attitude error, we
state and prove the corollary below.
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Corollary 1. Let Rd(t) ∈ C2(SO(3)) be a twice continuously differentiable trajectory on SO(3)
that has bounded first and second derivatives. Consider the control law given by Equations (8) and (9)
applied to the system given by Equations (1) and (24), where D is bounded as in Equation (23).

This leads to the attitude tracking error Q(t) =
(

Rd(t)
)TR(t) ∈ SO(3) converging asymptotically

to a neighborhood of the identity I ∈ SO(3).

Proof. We know from Theorem 1 that the trajectory tracking errors (Q, ω, FI) converge
asymptotically to (I, 0, 0) from almost all initial values in SO(3)×R3 ×R3, with the control
law (8) and (9) applied to the system (2) without any disturbance torque (i.e., D = 0).
Further, from Theorem 2 we know that the tracking errors (ω, FI) converge to the bounded
neighborhood N̄(0,0) defined by (22) when the disturbance torque D is bounded as in
(23). The dynamics of the tracking error ω in the presence of the disturbance torque D is
given by:

Jω̇ = JΩ×ω− kPSK(Q)− kI FI − kDω + D. (28)

All the quantities on the right-hand side of Equation (28) are bounded if Rd(t) is as
defined in the statement above, because Ω = ω + QTΩd is bounded in that case. Therefore
ω̇ is bounded, which means that the first two time derivatives of Q are bounded. From the
proof of Theorem 2, we know that the Lyapunov function V(Q, ω, FI) = V̄(ω, FI) + kPU (Q)
decreases in value until the tracking errors (ω, FI) converge asymptotically to the neighbor-
hood N̄(0,0). Let VNmax be the maximum value of V at the boundary of this neighborhood.
If Jmin is the minimum eigenvalue of the inertia matrix J, then we know that

V̄(ω, FI) ≥
1
2

Jmin
(
ω2

max + ζ2
max
)
.

Therefore an upper bound on U (Q) can be obtained as follows:

kPU (Q) = V(Q, ω, FI)− V̄(ω, FI))

≤ VNmax −
1
2

Jmin
(
ω2

max + ζ2
max
)

(29)

From Lemma 2, we also know that U (Q) = 〈K, I − Q〉 has a global minimum at
Q = I; the minimum value is U (I) = 0. Therefore, the value of U (Q) remains bounded
between 0 and the (conservative) upper bound given by the right side of the inequality (29).
This implies that the attitude tracking error Q converges to a bounded neighborhood of
the identity (Q = I) and a conservative bound on the size of this neighborhood is given
by (29). �

From Theorem 2 and Corollary 1, we conclude that the tracking errors for the feed-
back tracking error system given by Equations (4), (8), and (28), converges to a bounded
neighborhood of (Q, ω, FI) = (I, 0, 0).

It is worth noting that the proposed algorithm is computationally lightweight, espe-
cially much less demanding when compared to algorithms that utilize neural networks
to control quadcopter UAVs. For numerical simulations in the next section, we introduce
a time-varying bounded disturbance torque and show how the proposed controller effec-
tively compensates for disturbance, compared to a geometric nonlinear PD-type controller.
In addition, we compare the performance of our integral geometric controller with that of a
classic non-geometric PID controller.

5. Numerical Simulation

The results of two numerical simulations on the proposed control schemes are pre-
sented here. For these two simulations, a quadrotor UAV is simulated during the flight
to test the validity of the attitude control scheme. The first simulation uses MATLAB to
simulate a quadrotor with a simplified model but maintaining the properties of rigid body
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dynamics. The second simulation is an SITL simulation for the flight of a commercial
quadrotor UAV. The simulation is carried out in the simulation tool Gazebo. The purposed
geometric controller is implemented into the open-source autopilot software PX4 to replace
its original attitude/attitude-rate controller, which is described with details in [43]. The per-
formances of the proposed geometric controller and original PX4 controller are compared
with each other under the same flight task during the same simulation setup.

For the simulation carried out in MATLAB, the complete control of a quadrotor UAV
has two loops: the outer loop position control (for translational motion) and the inner loop
attitude control (for rotational motion). The attitude should change such that the desired
thrust direction required to follow the position trajectory is achieved. In this work, we
are looking at the inner loop of attitude control and numerically simulate our integral
geometric controller. For the outer loop, we utilize a position controller that enables us
to generate the desired attitude trajectory for our proposed attitude tracking controller.
Figure 2 shows the block diagram of the control system proposed here for controlling a
quadrotor UAV to follow a time-varying desired position and attitude.

Figure 2. Block diagram of a quadrotor UAV control system.

For this purpose, we use the following position controller in Equation (18) of [44] for
the outer loop:

f = eT
3 RT(mge3 + Pb̃ + Lv(Rν− vd)−mv̇d

)
. (30)

Here P, Lv ∈ R3×3 are positive definite matrices, b ∈ R3 is the UAV’s inertial position
vector, b̃ = b− bd, and bd, vd ∈ R3 are the desired inertial position and velocity vectors,
respectively. To make meaningful comparisons, we use this outer loop position controller
in all the following simulations to generate the desired attitude trajectory, while varying the
inner loop attitude controller for comparison purposes. The feedback position controller (30)
tracks a desired position trajectory in the form of a vertical helix going up in the z direction,
as shown with a black line in Figure 3.

In Section 5.1, the numerical integration method for numerical simulations is given.
In Section 5.2, numerical simulation of the proposed integral geometric attitude controller
under the influence of a disturbance torque is presented. To show the effectiveness of the
geometric integral term, we compare the performance of a geometric PD-type attitude
controller with our integral geometric controller under the influence of a disturbance
torque in Section 5.3. Section 5.4 compares the performance of the integral geometric
controller between the cases when disturbance torque acts, and when it does not. Section 6.1
uses an SITL simulation tool to show the performance of the proposed controller in a
simulated environment. In addition, its performance is compared with the performance of
a benchmark classical (non-geometric) PID attitude controller that is based on Euler angles,
under the influence of disturbance torque.
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Figure 3. 3D position and attitude tracking.

5.1. Discretization as a Lie Group Variational Integrator

In order to numerically simulate the proposed integral geometric attitude control
scheme, we discretize the equations of motion in the form of a Lie Group Variational Inte-
grator (LGVI). In contrast to general-purpose numerical integrators, an LGVI preserves the
structure of the configuration space without parameterization or re-projection. The LGVI
scheme used in this work was first proposed in [45]. The time step for discretization is a
constant h = tk+1 − tk. Here (.)k denotes a parameter of the system at time step k. The
discrete equations of motions are:

Rk+1 = Rk Fk,

(Ωd
k+1)

× =
1
h

log
(
(Rd

k)
TRd

k+1

)
,

J Ωk+1 = FT
k JΩk + hτk,

(31)

where Fk ≈ exp
(
hΩ×k

)
∈ SO(3) is evaluated using Rodrigues’ formula:

Fk = exp
(

fk
×) = I +

sin ‖ fk‖
‖ fk‖

f×k +
1− cos ‖ fk‖
‖ fk‖2 ( f×k )2, (32)

where

fk = hΩk.

This guarantees that Rk evolves on SO(3). Further details on discretization using LGVI
schemes, including the derivation of Equation (31), are given in [45].

5.2. Simulation Results

The quadrotor model considered in the simulations here has the following mass and
inertia properties [46]:

J = diag(0.0820, 0.0845, 0.1377) kg-m2; m = 4.34 kg. (33)

The time step size used in these simulations is h = 0.01s. The control gains are selected
as kP = 10, kI = 0.5 and kD = 5. To demonstrate the performance of the proposed controller,
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and show effectiveness of the novel geometric integral term, we introduce a time-varying
disturbance torque to the system. The time-varying disturbance torque consists of the sum
of a constant term and sinusoidal terms, as follows:

D =

d1
d2
d3

 = (3.0123× 10−2)

 sin(21πt) + 0.91
cos(18.9πt)− 8.1
cos(11.2πt) + 1.49

(N.m), (34)

where d1, d2, and d3 are time-varying components of the disturbance torque. The magnitude
of this disturbance is similar to the torque exerted to the drone by wind gusts. The
simulations were done using MATLAB to encode the LGVI algorithm and the control laws.

Figure 3 shows how the position and attitude converge to a neighborhood of the
desired trajectory using the proposed attitude tracking control in conjunction with the
position tracking control in Equation (30) under the influence of the disturbance torque.

Figure 4 shows the magnitude of the position tracking error over time in the presence
of the disturbance torque. It shows this tracking error reaches very low levels within 3 s.
Figure 5 shows the associated velocity tracking error magnitude varying with time under
the influence of disturbance torque. Figure 6 shows the thrust magnitude required to track
the desired trajectory, under the influence of disturbance torque. Note that the thrust here
is the sum of the four forces generated by rotors of the quadcopter. Each of these forces
vary with time and affect the dynamics of the vehicle according to the Equation (44) in [44],
which is omitted here for brevity.
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Figure 4. Magnitude of position error versus time.
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Figure 5. Magnitude of velocity error versus time.
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Figure 6. Thrust magnitude versus time.

Figure 7 shows components of the angular velocity tracking error, ω, and how
within 3 seconds they converge to a small neighborhood of the zero vector such that
‖ω‖ ≤ 1.7× 10−2 rad/s, under the influence of disturbance torque. The magnitude of the
attitude tracking error is given by the principal angle Φ of the attitude tracking error Q.
Φ is obtained from the following expression:

Φ = cos−1(
(tr(Q)− 1)

2
). (35)
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Figure 7. Angular velocity tracking error versus time.

Figure 8 shows the time profile of Φ under the influence of the disturbance torque.
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Figure 8. Principal angle of attitude tracking error versus time.

Figure 9 shows the magnitude of the proposed control torque over time under the
influence of the disturbance torque.
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Figure 9. Magnitude of control torque versus time.

5.3. Effectiveness of the Geometric Integral Term

The effectiveness of the geometric integral term in the proposed integral geometric
attitude control is shown by the following comparison. Under the existence of disturbance
torque, we first use the geometric PD-type attitude controller of [44] followed by our
proposed attitude controller to track the same trajectory, and compare the results.

Figure 10 shows that for the PD-type controller, components of ω do not converge
to zero but oscillate with noticeable amplitudes about it. On comparing this figure with
Figure 7, we see that the proposed controller shows significantly better performance.
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0

0.5
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1.5

Figure 10. Angular velocity tracking error versus time for PD-type controller of [44].

Figure 11 shows rapid oscillations in control that will likely not be realizable by,
and therefore should not be implemented on, a quadrotor UAV. Comparing Figure 9 with
Figure 11, the proposed controller shows remarkably better performance with negligible
oscillations. In addition, Figure 11 shows the large magnitude of the required control
torque given by the geometric PD-type controller. Note that much less control effort is
needed by the proposed controller (Figure 9), compared to the geometric PD-type controller
(Figure 11), to track the same trajectory.
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Figure 11. Magnitude of Control torque vs time for PD-type controller of [44].
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Figure 12 shows the norm of the attitude tracking error (given by the principal an-
gle of the rotation matrix Q) for both PD and the proposed controllers. The proposed
controller shows this error to decrease more smoothly and with less oscillations than the
PD-type controller.

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

For PD case Proposed

Figure 12. Norm of attitude tracking error for the proposed controller and the PD-type controller
in [44].

Overall, the comparison in this subsection shows that the proposed controller has
significant advantages over a PD-type controller in steady-state performance as well as
disturbance attenuation. It tracks the same maneuvering attitude trajectory better while
requiring significantly less overall control effort under the influence of a time-varying
disturbance torque.

5.4. Comparisons in the Zero Disturbance Case

Here, we make observations based on numerical simulations comparing the perfor-
mance of the proposed controller under influence of disturbance that was presented in
Section 5.2, with its performance when there is no disturbance (D = 0) while tracking the
same desired trajectory. If the disturbance is zero, then the proposed controller gives the
following results in numerical simulation.

Figure 13 shows components of the angular velocity tracking errors over time, which
converge asymptotically to zero. This case (D = 0) can be thought of as an ideal case, and by
comparing Figure 7 with the above figure, we see there is little change in the performance
of the proposed controller under the influence of a disturbance. The time plots in Figure 7
show a similar tracking profile to the ideal case of zero disturbance (Figure 13).
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Figure 13. Angular velocity tracking error versus time for D = 0.

Figure 14 shows the control torque magnitude, as given by the proposed controller
when there is no disturbance, i.e., D = 0. Again, considering this case as an ideal case,
we see that the proposed controller performs robustly in the presence of disturbance. The
profile in Figure 9 is similar (with minor oscillations) to that of Figure 14. The following
zoomed-in Figure 15 shows that when the disturbance torque acts, components of ω
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converge to, and remain in, a small neighborhood of the zero vector, which is the expected
result from Theorem 2. In addition, note that when there is no disturbance, components of
ω converge to zero, as shown in Figure 16.
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Figure 14. Magnitude of control torque versus time for D = 0.
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Figure 15. Zoomed-in plot of components of ω under the influence of the disturbance torque.
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Figure 16. Zoomed-in plot of components of ω for D = 0.

To summarize, in this section we compared the performance of the proposed integral
geometric attitude tracking controller for two situations, one when there is no disturbance
torque (ideal case) and the other when a disturbance torque acts. We observed that under
the influence of a disturbance torque the proposed controller performs well, and results in
similar but slightly degraded performance, compared to the ideal case of zero disturbance.
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6. Software-in-the-Loop and Hardware Implementation
6.1. Software-in-the-Loop (SITL) Simulation

An SITL simulation of the proposed integral geometric attitude controller is carried
out to show its performance in a realistic autonomous flight scenario. Our controller
is implemented on the PX4 autopilot software [47,48], which is an open-source flight
management system composed of different subsystems such as estimation, control, mission
planning, and UAV data link. The main PX4 controllers form a standard cascaded control
architecture; these controllers are a mix of P and PID controllers. Specifically, position
is controlled by a P controller, velocity by a PID controller, attitude by a nonlinear P
controller, and angular rate by a PID controller. Block diagrams for the main PX4 controllers
are presented in [49], and more details about the attitude control module of PX4 are
given in [50]. In this paper, specifically, the rate control and attitude control part of
the PX4 is replaced with our integral control scheme (https://github.com/nswang199
4/GeometricPX4, accessed on 26 August 2022). The quadcopter simulated is the 3DR
Solo, and the simulation tool used to visualize the performance of the controller is Gazebo.
During the simulation, the 3DR solo is in autonomous flight mode and assigned to follow
a helical trajectory similar to the desired trajectory in Figure 3. An animated video of
this simulation that shows the quadcopter is tracking a reference trajectory is given here
(https://github.com/nswang1994/ReseachVideos, accessed on 26 August 2022). The flight
control performance of the proposed control scheme is compared with the original controller
in PX4 autopilot by carrying out the aforementioned autonomous flight scenario. The PX4
autopilot’s control scheme is described with details in [43]. The inertia information of the
simulated 3DR Solo quadcopter is shown as follows [48]:

J = diag(0.011, 0.015, 0.021) kg-m2; m = 1.5 kg. (36)

The gains used for the proposed control scheme are:

kP = 0.25, kI = 0.06, kD = 0.075 (37)

Figures 17–19 show the performance of the proposed control scheme in the SITL
simulation. The results are compared with those from the simulation of the original
PX4 attitude controller. In these figures IGAC refers to the proposed Integral Geometric
Attitude Controller.
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Figure 17. Principal angle error in SITL simulation.

https://github.com/nswang1994/GeometricPX4
https://github.com/nswang1994/GeometricPX4
https://github.com/nswang1994/ReseachVideos
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Figure 18. Norm of angular velocity error in SITL simulation.
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Figure 19. Norm of torque in SITL simulation.

The magnitude of the attitude tracking error is given by the principal angle Φ of
the attitude tracking error Q, defined by (35) and shown in Figure 17. It can be clearly
seen that the proposed geometric control scheme has a better attitude tracking control
performance compared to the original PX4 controller. Figure 18 shows that the angular
velocity tracking performance of the proposed control scheme is similar to the default
controller in PX4. However, it is clear that the latter shows more high-frequency oscillations
in angular velocity error than the former. Figure 19, shows that the proposed geometric
PID control scheme requires less control torque magnitude than the PX4 controller during
most of the flight. To summarize, compared with the original PX4 autopilot controller,
the proposed control scheme demonstrates better control performance with less control
effort and less high-frequency oscillations.
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6.2. Flight Experiments

For real flight experiments, a custom-made quadrotor UAV platform was built to carry
out indoor experiments using a customized version of PX4 firmware. The control module
in this customized version replaced the default PX4 controller with the proposed geometric
PID attitude controller presented in this paper. A short video of a flight test conducted by
our GeoPID controller is given here (https://youtu.be/Yni6hoflUEI, accessed on 26 August
2022), which shows the good performance of the very well-tuned proposed controller in
the response to the given attitude commands by the pilot and its ability to preserve the
quadcopter in stable attitudes during the flight. This control scheme was also implemented
and tested in real autonomous flight experiments using an autonomous flight framework
that is presented in detail in Chapter 6 of the dissertation [51]. More videos of manual and
autonomous flights with this control scheme are available in AUSLab’s research website
(https://aksanyal.expressions.syr.edu/research-videos/, accessed on 26 August 2022).

7. Conclusions

In this work, an integral geometric attitude tracking control scheme is proposed,
and its almost global asymptotic stability is proved theoretically, using Lyapunov analysis
and a Morse–Lyapunov function on the state space of rigid-body attitude motion. Analysis
of robustness to bounded but persistent disturbance torque is also presented. Numerical
simulations confirm the performance of the proposed attitude controller for a challenging
helical trajectory, even in the presence of an oscillating disturbance torque, in comparison
with a state-of-the-art geometric PD-type attitude controller and a non-geometric PID
controller. We also implemented this attitude control scheme on a customized version of
the PX4 autopilot software. We saw that for a similar helical flight trajectory, using the
proposed controller results in a lower control effort and less high-frequency oscillations,
compared to using the original PX4 controller. Real flight experiments based on this
modified PX4 autopilot software were also carried out for experimental validation of this
work. These flight experiments showed the validity of this attitude control scheme for
stable attitude control of quadrotor UAVs.
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