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Abstract

Constrained formations of vehicles are interesting in a variety of space mission scenarios for their potential ability to solve complex
problems with relatively simple and specialized individual systems. However, the analysis of such formations can present some chal-
lenges. In this paper, an attitude observer is designed with the intent of applying it to three-vehicle heterogeneous formations with no
line of sight between two of the vehicles. Each vehicle measures directions to other vehicles and independent inertial reference vectors.
The relative direction between the two vehicles with no line of sight cannot be measured. Under some assumptions, these relative mea-
surements yield a reconstructed attitude, which, together with the angular velocities measured by rate gyros, drive the observers. The
attitude observers are identical and independently applied to each vehicle. Their design is based on the Lagrange-d’Alembert principle
of variational mechanics, considering only kinematic models. The attitude observers are locally exponentially stable and each estimation
error is shown to converge to zero error for almost all initial conditions. Finally, a series of numerical Monte Carlo simulations of the
discrete-time form of the observers validate the stability and convergence characteristics of the observers under the appropriate assump-
tions on the availability of a reconstructed attitude.
� 2022 COSPAR. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Formations are appealing to many scientific fields
because they can accomplish complex missions with rela-
tively simple individual systems, which are inherently easier
to build and deploy (Cao et al., 1997). In the spaceflight
context, a formation should be distinguished from a con-
stellation, because there is a coupling between the dynamic
states of its elements (Scharf et al., 2003).
https://doi.org/10.1016/j.asr.2022.03.003

0273-1177/� 2022 COSPAR. Published by Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail addresses: pfcruz@isr.tecnico.ulisboa.pt (P. Cruz), pbatis-

ta@isr.tecnico.ulisboa.pt (P. Batista), aksanyal@syr.edu (A. Sanyal).

Please cite this article as: P. Cruz, P. Batista and A. Sanyal, Design and ana
applied to constrained three-vehicle formations, Advances in Space Resea
The constrained formation considered in this paper was
studied in (Cruz and Batista, 2019), where the measure-
ment of some vehicles is restricted, either by the sensor
capacity or by environment imposed limitations. An atti-
tude estimation problem for a three-vehicle formation
can be found in (Andrle et al., 2009) and an application
to that problem is found in (Wang et al., 2019), which con-
siders a formation of small satellites. An extended Kalman
filter is applied to the three-vehicle formation in (Kim
et al., 2007) using rate-gyros to measure the angular veloc-
ity. In (Linares et al., 2011), the attitude of a two vehicle
constrained formation with a common landmark is deter-
lysis of attitude observers based on the Lagrange-d’Alembert principle
rch, https://doi.org/10.1016/j.asr.2022.03.003

https://doi.org/10.1016/j.asr.2022.03.003
mailto:pfcruz@isr.tecnico.ulisboa.pt
mailto:pbatista@isr.tecnico.ulisboa.pt
mailto:pbatista@isr.tecnico.ulisboa.pt
mailto:aksanyal@syr.edu
https://doi.org/10.1016/j.asr.2022.03.003
https://doi.org/10.1016/j.asr.2022.03.003


P. Cruz et al. Advances in Space Research xxx (xxxx) xxx
mined. More recently, (Wu, 2020) considered an attitude
problem where both hand-eye and vector measurements
were used to minimize a cost function and determine the
relative attitude between two spacecraft.

Such systems find some of its applications in the context
of space missions, more specifically if the distance between
the elements of the formation is large. Examples can be
found, for instance, when synthesizing large aperture tele-
scopes or long baseline interferometers far from Earth, or
even when sampling spatially disperse phenomena such as
the Earth’s magnetotail (Cesarone et al., 2007).

An important problem in many space systems is that of
attitude estimation, that is, the knowledge of the relative
orientation between two relevant coordinate frames. Early
attitude estimation methods include deterministic
approaches such as the Tri-Axial Attitude Determination
(TRIAD) algorithm (Black, 1964) and solutions of the
Wahba’s problem (Wahba, 1965). Examples for the latter
and other nonlinear estimation methods can be found in
(Crassidis et al., 2007). The design of an estimation method
considers different goals. Some methods seek fast or even
optimal performance (Wu et al., 2018), some look for
robustness (Sanyal et al., 2008), while others prioritize
low computational complexity for cost reduction. Often,
a combination of these and other goals are considered
(Batista et al., 2012).

A useful strategy to design filtering schemes is using the
minimization of an ‘‘energy” function, which can be helpful
in fulfilling stability criteria. These can be implemented
using the Hamilton–Jacobi-Bellman theory (Aguiar and
Hespanha, 2006; Zamani et al., 2011), but also by applying
the variational mechanics principles (Izadi and Sanyal,
2014). These principles have been applied not only to
spacecraft (Misra et al., 2016), but also to landing rovers
(Li et al., 2020).

This work follows those same principles to obtain an
estimate for all the attitudes of the three vehicle con-
strained formation proposed in (Cruz and Batista, 2019),
while accounting for the attitude kinematics and with sta-
bility assurances. The purpose of designing such an obser-
ver is to improve the accuracy of the estimate by filtering
the measurement noise using angular velocity information,
which won’t be the case if the attitude determination was
carried out at every time instant that measurements were
obtained. Additionally, sensors that measure angular
velocity values are common in spacecraft. Therefore, since
attitude observers can be driven by reconstructed attitudes
(Mahony et al., 2008) and there is an appropriate determin-
istic algorithm for attitude reconstruction in this forma-
tion, the observer in this paper is driven by such
variables, instead of being directly driven by the
measurements.

The main contribution of this paper is the design of an
attitude observer which filters the errors of the determinis-
tic attitude reconstruction by considering angular velocity
measurements. Furthermore, the design of attitude filters
for formations has not been extensively developed, and
2

thus, attitude filters for constrained formations of vehicles
are not that common in the literature. Previous work by the
authors can be found in (Cruz et al., 2021). This paper pre-
sents a unified and thorough presentation and analysis of
the solution, and it includes all the theorems and proofs
that had been omitted in the conference paper. Finally,
extensive and realistic simulations are also presented in
detail, including the performance evaluation with Monte
Carlo runs.

This paper is organized as follows. Section II describes
the constrained formation, the attitude estimation problem,
and the attitude reconstruction algorithm. In Section III,
the observer is derived based on variational mechanics. This
method relies on an energy-like function of the estimation
errors, which is given by the Lagrangian and the application
of the Lagrange-d’Alembert principle. The stability analysis
follows and it is shown that the observer error converges to
zero for almost all initial conditions and also that the origin
is locally exponentially stable. Next, a first order discrete-
time implementation of the filter is summarized in Sec-
tion IV, which is derived from the discrete-time Lagrange-
d’Alembert principle (Marsden and West, 2001). Finally,
in Section V, the discrete-time filter is implemented in
numerical simulations, which in a series of Monte Carlo
runs evidence the convergence characteristics and perfor-
mance of the observer.

2. Problem statement

2.1. Notation

Throughout this document, scalars are expressed in reg-
ular typeface and regular case, vectors are expressed in
bold and regular case, and matrices are expressed in bold
and upper case. The symbol 0 represents the null vector
or matrix and I represents the identity matrix. The set of

unit vectors in R3 is denoted by

S2 :¼ x 2 R3 : kxk ¼ 1
� �

. The special orthogonal group

of dimension 3, which describes proper rotations, is
denoted by

SOð3Þ :¼ X 2 R3�3 : XXT ¼ XTX ¼ I ^ det Xð Þ ¼ 1
� �

.

The skew-symmetric matrix parameterized by x 2 R3,

which encodes the cross product operator in R3, is denoted
by

S xð Þ :¼
0 �x3 x2

x3 0 �x1

�x2 x1 0

2
64

3
75;

with x ¼ x1 x2 x3½ �T. Therefore, S xð Þy ¼ x� y, with y 2 R3,

and S�1 :ð Þ denotes the unskew operator, i.e. S�1 S xð Þð Þ ¼ x.
The rotation matrix in SOð3Þ that transforms a given

vector, in R3, expressed in the body-fixed frame of vehicle

j into the inertial frame is denoted by RI
j. If the rotation

transforms a vector from the body-fixed frame of the j-th
vehicle to the body-fixed frame of the i-th vehicle it is rep-
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resented as Ri
j, instead. The rotation matrix of an angle

h 2 R about the axis described by the unit vector x 2 S2

is denoted by R h; xð Þ, which is written as (Markley and
Crassidis, 2014)

R h; xð Þ :¼ cos hð ÞIþ ð1 � cosðhÞÞxxT � sin hð ÞS xð Þ: ð1Þ
Finally, the four-quadrant inverse tangent function is
denoted by atan2 b; að Þ, with a; b 2 R, and the inverse
cosine function is denoted as arccos að Þ.
2.2. Problem statement

Consider a formation with three vehicles, each with a
body-fixed coordinate frame. All vehicles are equipped with
vision-based sensors, which measure directions with respect
to other vehicles in their lines of sight, and sensors that mea-
sure directions of inertial references, such as the direction to
a cluster of stars, amagnetic field, or other known references.
Finally, it is assumed that each vehicle has three
orthogonally-mounted rate gyros, which give a measure-
ment of the angular velocity vector. Each sensor gives mea-
surements in their respective body-fixed coordinate frames.

The measurement set of each element of the formation
comprises its own angular velocity, one reference direction,
and directions to at least one vehicle. The deputies, which is
the designation of vehicles 2 and 3, cannot measure the rel-
ative direction with respect to one another, because the line
of sight between them is assumed limited. In contrast, vehi-
cle 1 measures relative directions to both deputies. The for-
mation and respective measurements are depicted in Fig. 1.

The letter d denotes the direction measurements, while
the symbol x denotes the angular velocity measurements.
The subscript in the reference direction and angular veloc-
ity measurements indicates the vehicle taking the measure-
ment, whereas the subscript in the relative measurements
indicates both the vehicle taking the measurement and
the respective target, i.e., the subscript j=k indicates that
the measurement was taken by vehicle j and it is a relative
direction pointing to vehicle k. Moreover, a left superscript
indicates the frame where the measurement is represented,
for instance, Idj is the measurement taken by vehicle j rep-
resented in the inertial frame. The left superscript is omit-
ted if the frame in which the vector is represented
coincides with the body-fixed frame of the vehicle taking
Fig. 1. Three-vehicle heterogeneous formation.

3

the measurement. Therefore, the four relative measure-
ments are denoted as d1=2; d2=1; d1=3, and d3=1, the measure-
ments of the inertial references are denoted as d1; d2, and
d3, which, in the inertial frame, are respectively denoted
as Id1;

Id2, and Id3. The value of the latter is assumed to
be known. Finally, the angular velocity of each vehicle is
respectively represented as x1;x2, and x3. These are
assumed to be continuous, bounded, and unbiased.

The attitude kinematics of the j-th vehicle is given by

_RI
j tð Þ ¼ RI

j tð ÞS xj tð Þ
� �

: ð2Þ
The observer kinematics is a copy of the true attitude kine-
matics, which with the observer internal representation of
the attitude and angular velocity denoted by x̂j, is given,
for vehicle j, as

_̂
RI

j tð Þ ¼ R̂I
j tð ÞS x̂j tð Þ

� �
: ð3Þ

The problem addressed in this paper is the design of attitude

estimators for RI
1;R

I
2;R

I
3

� �
.Moreover, their respective errors

must converge to zero for almost all initial conditions. The

estimates of the relative attitudes, R1
2;R

1
3;R

2
3

� �
, result from

the inertial set, because these are defined by R1
2 ¼

ðR̂I
jÞ

T
RI

2;R
1
3 ¼ ðR̂I

jÞ
T
RI

3, and R2
3 ¼ R̂I

2
TRI

3, respectively.

2.3. Attitude Reconstruction

The direction vector measurements and the inertial ref-
erences can be used to reconstruct both relative and inertial
attitudes of the formation by applying the deterministic
algorithm in (Cruz and Batista, 2019). The observers pro-
posed in the sequel are driven by such reconstructed iner-
tial attitudes. Since this algorithm is employed in the
simulation section, it is summarized here for the sake of
completeness.

The basic idea is to use the formation symmetries to
obtain a set of candidates for the inertial attitude of the
chief. Then, comparing such candidates, one can find the
correct attitudes, because they must be consistent regard-
less of the variables used in their construction. Consider

the problem geometric constraint given as �d1=2 ¼ R1
2d2=1

and define

x1 :¼
d2=1�d1=2

d2=1�d1=2k k ; if d2=1 – d1=2

S d1ð Þd1=2

S d1ð Þd1=2k k ; if d2=1 ¼ d1=2

8><
>: :

It follows that �d1=2 ¼ R h2;�d1=2

� �
R p; x1ð Þd2=1 for any

h2 2 R. Hence, consider that

R1
2 ¼ R h2;�d1=2

� �
R p; x1ð Þ: ð4Þ

Then, the result of substituting (4) in the geometric con-

straint given by IdT
1
Id2 ¼ dT

1R
1
2d2 can be expressed as

(Cruz and Batista, 2019)

ap12
¼ ac12

cos h2ð Þ þ as12
sin h2ð Þ; ð5Þ
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where as12
; ac12

, and ap12
are scalar coefficients, which are

associated with the trigonometric constraints of the rela-
tion between vehicles 1 and 2. The value of such coefficients
are given by

as12
:¼ dT

1S �d1=2

� �
R p; x1ð Þd2;

ac12
:¼ dT

1S d1=2

� �2
R p; x1ð Þd2;

and

ap12
:¼ dT

1 d1=2d
T
1=2R p; x1ð Þd2 � IdT

1
Id2:

Solving the trigonometric equation in (5) results in

h2 :¼ atan2 as12
; ac12

ð Þ � arccos
ap12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2
s12

þ a2
c12

q
0
B@

1
CA: ð6Þ

Since different candidates result from the different signs in
(6), then the relative attitude candidate is given as

R1
2

� �
X
¼ R h2;�d1=2

� �
R p; x1ð Þ;

where X identifies the respective candidate. If d1 is trans-

verse to R1
2

� �
X
d2, then the respective inertial candidate

results from the TRIAD algorithm and is given by

RI
1

� �
X
:¼ Id1d

T
1 þ S Id1ð ÞId2 S d1ð Þ R1

2ð ÞX d2½ �T
S Id1ð ÞId2k k S d1ð Þ R1

2ð ÞX d2k k
þ S Id1ð ÞS Id1ð ÞId2 S d1ð ÞS d1ð Þ R1

2ð ÞX d2½ �T
S Id1ð ÞId2k k S d1ð Þ R1

2ð ÞX d2k k :

The analogous relative candidate is obtained by consider-

ing the analogous parameterization of R1
3 and the analo-

gous parameters x3 and h4. Hence, it is given as

R1
3

� �
Y
¼ R h4;�d1=3

� �
R p; x3ð Þ:

Again, the respective inertial candidate RI
1

� �
Y

results from

the TRIAD algorithm, but with the measurement pairs
Id1; d1ð Þ and Id3; R1

3

� �
Y
d3

� �
instead.

From the comparison between the four candidates for

RI
1, the correct attitude is given by finding identical candi-

dates, i.e., the candidate pair which results in the lowest
value of a metric given by

l ¼ arccos
trace RI

1

� �T

X
RI

1

� �
Y

� �
� 1

2

0
@

1
A

						
						:

By construction and in the absence of noise, the solution

yields l ¼ 0, so RI
1

� �
X

should be equal to RI
1

� �
Y
. In the

presence of noise, the pair with the lowest l is selected
and averaged.

Finally, once the solutions for RI
1;R

1
2, and R1

3 are avail-

able, the solutions for RI
2 and RI

3 follow immediately from

RI
2 ¼ RI

1R
1
2 and RI

3 ¼ RI
1R

1
3.

In general, there is a unique solution. Nonetheless, in
specific configurations, there may be multiple solutions.
Thus, in the simulations, it is assumed that the configura-
tion is such that the deterministic algorithm gives a unique
4

solution, see (Cruz and Batista, 2020) for the characteriza-
tion of the conditions of the solution.

3. Observer Design

The ensuing attitude observer results directly from the
application of the Lagrange-d’Alembert principle of varia-
tional mechanics. It assumes that the inertial attitudes
reconstructed from the measurement set are available,
which can be accomplished with the algorithm described
in the previous section. Since the three observers are iden-
tical and driven by analogous variables, then a single vehi-
cle is considered throughout this section.

First, a Lagrangian function is constructed to represent
an energy-like function of the estimation errors. Then, the
Lagrange-d’Alembert principle applied to the sum of the
first variation of the action functional and a dissipation
term gives the dynamics of the observer feedback term.
For readability, the time dependence of the variables is
omitted in this section.

3.1. Lagrangian

Consider the j-th vehicle of the formation. Its observer
internal representation of the angular velocity is given by
the difference between the true angular velocity and a feed-
back term, /j, as follows

x̂j ¼ xj � /j: ð7Þ
The associated kinetic energy-like function is defined as

T j :¼ mj

2
xj � x̂j

� �T
xj � x̂j

� � ¼ mj

2
/T

j /j;

where mj is a positive weight constant. The inertial attitude
error matrix of vehicle j is given by

QI
j ¼ RI

jðR̂I
jÞ

T
: ð8Þ

The associated potential energy-like function is defined as

Uj :¼ pjtrace I�QI
j

� �
;

where pj is a positive weight constant. Finally, the Lagran-

gian of the formation is given by

Lj ¼ T j � Uj ¼ mj

2
/T

j /j � pjtrace I�QI
j

� �
:

3.2. First variation of the action functional

The action functional is defined as the time integral of
the Lagrangian function. Thus, its first variation is given by

dsj ¼
Z tf

t0

dLj dt ¼
Z tf

t0

dT j � dUj dt; ð9Þ

where t0 and tf are the initial and final time of estimation,
respectively. The estimated inertial attitude first variation

of the j-th vehicle is given as dR̂I
j ¼ R̂I

jS gj
� �

, where gj is a
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perturbation function. Moreover, from the attitude kine-
matics, the first variation of the observer internal angular

velocity is given by dx̂j ¼ _gj þ S x̂j

� �
gj, see (Izadi and

Sanyal, 2014). Therefore, the first variation of the kine-
matic term is expressed as

dT j ¼ �mj xj � x̂j

� �T
_gj þ S x̂j

� �
gj

� �
;

or, equivalently,

dT j ¼ �mj/
T
j _gj þ S x̂j

� �
gj

� �
: ð10Þ

The first variation of the potential term is given by

dUj ¼ pjtrace RI
jðR̂I

jÞ
T
S gj
� �� �

;

which, decomposing RI
jR̂

IT
j into

RI
jðR̂I

jÞ
T ¼ 1

2
RI

jðR̂I
jÞ

T þ R̂I
jðR̂I

jÞ
T

� �
þ 1

2
RI

jðR̂I
jÞ

T � R̂I
jðR̂I

jÞ
T

� �
and noticing that the trace of the product between a sym-
metric and skew symmetric matrix is zero, gives

dUj ¼ pjtrace
1

2
RI

jðR̂I
jÞ

T � R̂I
jðR̂I

jÞ
T

� �
S gj
� �
 �

:

Lastly, from trace S að ÞS bð Þð Þ ¼ �2aTb with a; b 2 R3, it fol-
lows that

dUj ¼ �pjS
�1 RI

jðR̂I
jÞ

T � R̂I
jðR̂I

jÞ
T

� �T

gj: ð11Þ
3.3. Observer feedback dynamics

Consider a positive definite matrix Dj and define a dissi-

pation term as sT
j gj ¼ /T

j Djgj. Then, applying the

Lagrange-d’Alembert principle to the sum of the action

functional and dissipation, i.e. dsj þ
R tf
t0
sT
j gj dt ¼ 0, and

recalling (9)-(11), yieldsZ tf

t0

�mj/
T
j _gj�mj/

T
j S x̂j

� �
gjþpjS

�1 Mj

� �T
gjþ Dj/j

� �T
gj

n o
dt¼ 0;

where Mj :¼ ðR̂I
jÞ

T
RI

j � ðR̂I
jÞ

T
R̂I

j. Since the perturbation

function is zero at t0 and at tf , then integrating the first
term by parts givesZ tf

t0

mj
_/j þ mjS x̂j

� �þDj

� �
/j þ pjS

�1 Mj

� �� T
gj

n o
dt ¼ 0:

Finally, the fundamental lemma of the calculus of varia-
tions, yields an equation which encodes the estimator feed-
back term dynamics. Thus, the observer equations are
given as

_̂
RI

j ¼ R̂I
jS x̂j

� � ð12aÞ
and

mj
_/j ¼ � mjS x̂j

� �þDj

� �
/j � pjS

�1 Mj

� �
: ð12bÞ
5

3.4. Observer stability

The error dynamics are studied under the assumption
that the measurements are free of noise. In such conditions,
the error is shown to converge asymptotically to zero for
almost all initial configurations. Furthermore, the origin
is locally exponentially stable. The attitude observer per-
formance in the presence of sensor noise is assessed in
the simulation section.

Take the time derivative of (8) and expand using (2) and
(3). Recalling (7), it follows that

_QI
j ¼ RI

jS xj

� �
R̂ IT

j þ RI
j S x̂j

� �T
R̂ IT

j ¼ RI
jS /j

� �
R̂ IT

j :

or, equivalently, _QI
j ¼ S RI

j/j

� �
QI

j. The observer feedback

dynamics remain the same as in (12b), although their

dependence on QI
j is evidenced by some rearrangements.

Hence, the error system dynamics, considering the j-th
vehicle, are given by

_QI
j ¼ S RI

j/j

� �
QI

j ð13aÞ

and

mj
_/j ¼ �pjS

�1 ðR̂I
jÞ

T ½QI
j � ðQI

jÞ
T�RI

j

� �
� mjS x̂j

� �þDI
j

h i
/j: ð13bÞ
3.4.1. Equilibrium Points

The equilibrium points of the error system are found by

substituting _QI
j ¼ 0 and _/j ¼ 0 in (13), which yields

0 ¼ S RI
j/j

� �
QI

j ð14aÞ

and

0 ¼ �pjS
�1 ðR̂I

jÞ
T

QI
j � ðQI

j ÞT
h i

RI
j

� �
� mjS x̂j

� �þDI
j

h i
/j: ð14bÞ

From (14a), /j ¼ 0. Therefore, it follows that (14b)

becomes

S�1 ðR̂I
jÞ

T ½QI
j � ðQI

jÞ
T�RI

j

� �
¼ 0

which implies that

QI
j ¼ ðQI

jÞ
T
; ð15Þ

which is satisfied by all attitude error matrices with an angle
of 0� or 180�, considering their Euler axis/angle representa-
tion in (1). Hence, the error system is at the equilibrium when
the feedback term is zero and the error matrix is symmetric.

Next, recall the Euler axis/angle parameterization, con-

sider the axis and angle respectively given by e 2 S
2 and

� 2 R, and denote QI
j :¼ R �; eð Þ. Then, rewrite (15) as

R �; eð Þ ¼ R �; eð Þ½ �T;
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or, equivalently, R 2�; eð Þ ¼ I. It follows, from (1) and the
double angle trigonometric identities, that

1 � cos2 �ð Þ þ sin2 �ð Þ� 
eeT � I
� �� 2 sin �ð Þ cos �ð ÞS eð Þ ¼ 0:

ð16Þ
As consequence of the Pythagorean identity, i.e.

sin2 �ð Þ þ cos2 �ð Þ ¼ 1;

it is verified that 1 � cos2 �ð Þ þ sin2 �ð Þ ¼ 2 sin2 �ð Þ. Hence,
applying such relation to (16), gives

2 sin �ð Þ sin �ð Þ eeT � I
� �� 2 sin �ð Þ cos �ð ÞS eð Þ ¼ 0

or, equivalently,

sin �ð Þ sin �ð Þ eeT � I
� �� cos �ð ÞS eð Þ�  ¼ 0: ð17Þ

If sin �ð Þ ¼ 0, then � ¼ kp; k 2 Z. Else, if sin �ð Þ– 0, then
sin �ð Þ eeT � Ið Þ ¼ cos �ð ÞS eð Þ. However, the left hand side
is symmetric, whereas the right hand side is skew symmet-
ric, and both are different from zero, which means that this
condition cannot be satisfied. Therefore, the solution for
(17) is � ¼ kp; k 2 Z.

The equilibrium points can be represented in a more

compact form by recalling that trace QI
j

� �
¼ 1 þ 2 cos �ð Þ.

Hence, for � ¼ 0 þ 2kp; trace QI
j

� �
¼ 3 and for

� ¼ pþ 2kp; trace QI
j

� �
¼ �1. Then, define

Sj :¼ QI
j;/j

� �
jtrace QI

j

� �
¼ 3; /j ¼ 0

n o
; ð18Þ

which is the desired equilibrium point (zero estimation
error). Define also the undesired equilibrium set as

Uj :¼ QI
j;/j

� �
jtrace QI

j

� �
¼ �1; /j ¼ 0

n o
: ð19Þ

The set of all equilibrium points is the union of both sets,
which is denoted as Ej ¼ Sj [ Uj.

3.4.2. Observer stability

The following theorem details the stability characteris-
tics of the observer.

Theorem 1. Consider the error system (13) and the
equilibrium sets Sj and Uj, defined in (18) and (19),
respectively. Assume that xj is bounded. Then:
1. the set Uj is forward invariant and unstable relative to
(13);

2. the set Sj is locally exponentially stable; and
3. the error converges to Sj for almost all initial conditions

R Uj.

Proof. First, consider the Lyapunov candidate function
given by

V tð Þ ¼ mj

2
/T

j /j þ pjtrace I�QI
j

� �
; ð20Þ
6

whose time derivative is given as

_V tð Þ ¼ /T
j mj

_/j

� �� pjtrace _QI
j

� �
;

or, using (13), expressed as

_V tð Þ ¼ /T
j �mjS x̂j

� �
/j � pjS

�1 Mj

� ��DI
j/j

h i
� pjtrace RI

j S /j

� � ðR̂I
jÞ

T
� �

: ð21Þ

Since /T
j S x̂j

� �
/j ¼ 0 and recalling the trace cyclic prop-

erty, (21) is given as

_V tð Þ ¼ �/T
j pjS

�1 Mj

� �� /T
j D

I
j/j

� pjtrace ðR̂I
jÞ

T
RI

jS /j

� �� �
: ð22Þ

Then, recalling the procedure to obtain (11), rewrite (22) as

_V tð Þ ¼ �pj/
T
j S

�1 Mj

� �� /T
j D

I
j/j þ pj/

T
j S

�1 Mj

� �
:

Finally, _V tð Þ ¼ �/T
j D

I
j/j 6 0, which implies that /j is

bounded by the initial conditions of both /j and Qj. Next,

compute the second time derivative of the Lyapunov func-
tion, which results in

€V tð Þ ¼ 2

mj
/T

j D
I
j mjS xj tð Þ

� �
/j þ pjS

�1 Mj

� �þDI
j/j

h i
:

Since the difference between matrices in SOð3Þ is bounded,
then Mj is bounded. Moreover, recall that /j is bounded

and xj is assumed to be bounded. Then, €V tð Þ is uniformly

bounded, which implies that _V tð Þ is uniformly continuous.

Furthermore, since V tð Þ P 0 and _V tð Þ 6 0, it follows that
V tð Þ converges to a limit, for any finite initial condition.

Then, it follows from Barbalat’s lemma that _V tð Þ converges
to zero (Khalil, 2002), which in turn implies that /j con-

verges to zero. If QI
j tð Þ; 0

� �
R Ej, then the error system

evolves towards a state with /j – 0, because _/j – 0. Thus,

Ej ¼ Sj [ Uj is the largest forward invariant set.
Next, consider the linearization of the error dynamics

about Sj. To that purpose, let QI
j � S xð Þ þ I and /j � y,

which yields

_x

mj _y

� �
¼

0 RI
j

�2pjðR̂I
jÞ

T �mjS xj

� ��Dj

" #
x

y

� �
:

Similarly to the linearization about Uj, apply the transfor-

mation given by z ¼ 1ffiffiffiffiffi
2pj

p RI
jy. It follows that

_x

mj _z

� �
¼

0
ffiffiffiffiffiffiffi
2pj

p
I

� ffiffiffiffiffiffiffi
2pj

p
I �ðR̂I

jÞ
T
DjðR̂I

jÞ
T

" #
x

z

� �
: ð23Þ

Let n ¼ x

z

� �
and B ¼ b1I 0

0 b2I

� �
and consider the Lya-

punov candidate function

W nð Þ ¼ 1

2
nTBn:
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Therefore, its time derivative is given by
_W tð Þ ¼ b1x

T _xþ b2z
T _z. Choose b1 ¼ b2 ¼ b > 0. Then,

expanding the derivatives, using (23), recalling that Dj is

positive definite, yields _W tð Þ ¼ �nTCTCn 6 0, where

C tð Þ ¼ 0 0

0
ffiffiffi
b

p
D

1
2
jðR̂I

jÞ
T

" #
: ð24Þ

Denote the linearized dynamics matrix in (23) by A2. Sim-
ilarly to the argument in Khalil (2002, Example 8.11), if the
pair A2;Cð Þ is uniformly completely observable (UCO),
then A2 is globally exponentially stable and therefore the
error system (13) is locally exponentially stable in I; 0ð Þ.
To show that the pair A2;Cð Þ is UCO, let

L tð Þ ¼ C tð Þ
C tð ÞA2 tð Þ þ _C tð Þ

� �
;

where

_C tð Þ ¼ 0 0

0
ffiffiffi
b

p
D

1
2
jS xj

� �TðR̂I
jÞ

T

" #
ð25Þ

Thus, omitting the time dependence, it follows that

LTL ¼ CTCþ _CT _Cþ _CTCA2 þ CA2ð ÞT _C

þ CA2ð ÞTCA2: ð26Þ
Denote (26) as the block matrix

LTL ¼ L11 L12

LT
12 L22

� �
: ð27Þ

Then, from (23)-(25) and after some rearrangements, each
block entry is respectively given as

L11 ¼ 2pjbR
I
jDjðR̂I

jÞ
T
;

L12 ¼ b
ffiffiffiffiffiffiffi
2pj

q
RI

jDjFjðR̂I
jÞ

T
;

and L22 ¼ bRI
jDjR

IT
j þ bRI

jF
T
j DjFjR

IT
j ;

where Fj ¼ S xj

� �þDj

� 
. Since Dj is positive definite, then

L11 is positive definite. Moreover, the Schur complement
with respect to L11, hereby denoted by

L=L11 ¼ L22 � LT
12L

�1
11 L12, which noticing that

L�1
11 ¼ 1

2pjb
RI

jD
�1
j RIT

j and after some rearrangements yields

L=L11 ¼ bRI
jDjR

IT
j þ bRI

jF
T
j DjFjR

IT
j

�bRI
jF

T
j DjD

�1
j DjFjR

IT
j :

Then, L=L11 ¼ bRI
jDjR

IT
j , which means that the Schur

complement is positive definite as well. Therefore, (27) is
positive definite and the pair A2;Cð Þ is UCO Bristeau
et al. (2010, Theorem 4). This concludes the second part
of the proof.

Finally, consider a point Qu;/uð Þ 2 Uj, which, recalling
(19), implies that the value of the Lyapunov function
defined by (20) for any such point is V tð Þ ¼ 4pj. Moreover,

any neighborhood of Qu;/uð Þ includes states for which
7

V tð Þ < 4pj, for instance by varying Qj, while fixing /u ¼ 0.

Any trajectory with such initial conditions does not

converge to Uj because _V tð Þ 6 0 and therefore the set Uj

is unstable relative to (13). There are, however, a set of
specific trajectories that converge to Uj along the center
stable manifold (Khalil, 2002). From classical center
manifold theory, those trajectories are zero-measure in
the overall space and since Uj is a zero-measure subset of

SOð3Þ � R3, then the proof is complete.
4. Discrete-time observer

The observer implementation uses a discrete-time ver-
sion of the observer derived in the previous section. This
version is a Lie group variational integrator (LGVI) and
assumes that the measurements are obtained at an appro-
priate constant rate in discrete-time. The stability proper-
ties are the same for both versions of the observer since
LGVI maintain the properties of variational mechanics
(Izadi and Sanyal, 2014).

Let the subscript k denote the k-th time instant in a set
of N equally spaced sub-intervals, with time step denoted
by Dt. The derivation of the discrete-time filter relies firstly
on the discretization of the Lagrangian, which is given by

Lj k ¼ T j k � Uj k ¼ mj

2
/T

j k/j k � pjtrace I�QI
j k

� �
:

Next, consider the discrete attitude kinematics given as

_̂
RI

j kþ1 ¼ R̂I
j k exp DtS x̂j k

� �� 
:

Then, the first variation of the discrete estimates for the
attitude and angular velocity are respectively given by
(Izadi and Sanyal, 2014)

dR̂I
jk ¼ R̂I

jkS gjk
� �

and

Dtdx̂j k ¼ gj kþ1 � exp �DtS x̂j k

� �� 
gj k:

Applying the discrete formulation of the Lagrange-
d’Alembert principle (Marsden and West, 2001) to the
sum of the discrete action functional and a discrete damp-
ing term results in

dsj k þ Dt
XN�1

i¼0

sT
Dj k

gj k ¼ 0;

Finally, considering the first variation of the discrete
Lagrangian and the damping term sDj kþ1 ¼ Djxj k, the

discrete-time version of the filter is expressed as

_̂
RI

j kþ1 ¼ R̂I
j k exp DtS x̂j k

� ��  ð28aÞ
and

mj
_/jkþ1 ¼ exp �DtS x̂jk

� �� 
mjI�DtDj

� �
/jk �DtpjS

�1 Mjkþ1

� �� 
;

ð28bÞ
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with Mj kþ1 ¼ R̂I T
j kþ1R

I
j kþ1 � RI T

j kþ1R̂
I
j kþ1, and

x̂j k ¼ xj k � /j k. For further details about the derivation

of these equations, see (Izadi and Sanyal, 2014).

5. Simulation

The performance of the proposed observer was assessed
in the presence of sensor noise using a series of numerical
simulations. First, a nominal configuration and maneuver
were defined and implemented, considering the assump-
tions of the observer design. Then, a set of 1000 Monte
Carlo simulations, whose initial conditions were perturbed
relative to the nominal configuration, were implemented
computationally to further assess the observer stability in
a larger set of configurations.

Since each vehicle employs its own attitude observer, the
nominal initial configuration is different for each vehicle,
thus showing different aspects of the observer performance.
Therefore, the initial attitude error for vehicle 1 starts close
to the origin. The initial attitude error for vehicle 2 starts
far from the origin, but still in the stable manifold S2.
Finally, the initial attitude error for vehicle 3 starts at the
unstable manifold U 3.

This section starts with the description of the measure-
ment and motion models. Then, the nominal initial config-
uration and maneuver are defined, followed by the
description of the input perturbation models and respective
parameters. Next, the simulation setup is defined and,
finally, the results are given respectively for a single nomi-
nal simulation and for a set of perturbed configurations.

5.1. Measurement model

The line of sight and inertial reference measurements
follow the model of the large field of view focal plane sen-
sor (Cheng et al., 2006). In this model, the sensor gives two
coordinates, m ¼ ½v;w�, whose measurement is expressed as

mm ¼ mþ n; ð29Þ
i.e. the sum of the true value with a zero mean random

Gaussian noise, n � N 0;PF
� �

. The covariance in the focal

plane is given by

PF ¼ r2
d

1 þ v2 þ w2
� � 1 þ v2ð Þ2 vwð Þ2

vwð Þ2 1 þ w2
� �2

" #
;

where rd is the standard deviation of the focal coordinates.
The transformation from the focal coordinates into the
sensor frame unit vector is given as

sd ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ v2 þ w2

q v;w; 1½ �T;

where the focal length is assumed to be equal to one. The
angular velocity measurement follows the discrete-time
unbiased rate gyro model given by (Markley and
Crassidis, 2014)
8

xjm ¼ xj þ rxj
Dt�

1
2Nj; ð30Þ

where xjm is the angular velocity measurement, rxj
is the

standard deviation of the noise, and Nj � N 0; Ið Þ.

5.2. Motion model

The true values of the attitude follow the kinematics (2).
Moreover, the model of the dynamics for a rigid body,
which can represent spacecraft in flight, determines the
ground truth of the angular velocity for each vehicle. Con-
sidering vehicle j, such model is given by

_xj ¼ J�1
j sF j � S xj

� �
Jjxj

� �
; ð31Þ

where sF j represents an external moment applied to each

vehicle given in Nm�1, and Jj denotes the matrix of the

moment of inertia given in kgm2.

5.3. Nominal initial conditions

The nominal initial configuration of the formation con-
siders the inertial attitudes given by the identity matrix, i.e.

RI
1 ¼ RI

2 ¼ RI
3 ¼ I:

The inertial references are constant and given by

Id1 ¼
1

0

0

2
64

3
75; Id2 ¼

0

1

0

2
64

3
75; and Id3 ¼

0

1

0

2
64

3
75;

whereas the inertial relative directions are initially given by

Id1=2 ¼ RI
1d1=2 ¼

0
1ffiffi
2

p

1ffiffi
2

p

2
64

3
75and Id1=3 ¼ RI

1d1=3 ¼
0

0

1

2
64

3
75:

Finally, the initial angular velocities are given, in rad/s, by

x1 ¼ x2 ¼ x3 ¼ 0:1; 0:1; 0:1½ �T:
5.4. Nominal maneuver

It is assumed that the vehicles can readjust their relative
positions. The nominal maneuver affects only the relative
position of vehicle 2. Thus, the value of Id2 is given by
the following update equation

Id2 kþ1 ¼ R a1; n1ð ÞId2 k ð32Þ

with a1 ¼ Dt p
240

and n1 ¼ 0 � 1ffiffi
2

p 1ffiffi
2

p
h iT

.The subscript kindi-

cates the current time instant and Dt is the simulation time
step.

This maneuver intentionally avoids the special cases of
the formation described in (CCruz and Batistaruz and
Batista, 2020), because these would result in a set with mul-
tiple solutions for the reconstructed attitudes driving the
observers.
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In the inertial frame, only the measurements of the rel-
ative direction between vehicles 1 and 2 vary, while all
other measurements are constant in that frame. The nom-
inal evolution of Id1=2 is depicted in Fig. 2. Note that the
orange and green lines are overlapped because the second
and third elements of Id1=2 have the same initial values

and the maneuver maintains Id1=2 in the plane where both
elements are identical.
5.5. Perturbed initial configuration model

The Monte Carlo simulations consider a large set of tri-
als where the initial configuration is perturbed in relation
to the nominal initial conditions.

The initial values of Id1;
Id2;

Id3;
Id1=2, and Id1=3, which

are three-dimensional unit vectors, are perturbed by a
small rotation which changes their direction. Denote the
unit vector of the nominal initial configuration as nn. Then,
the perturbed unit vector is given as

n ¼ R dh;
S nnð Þr
S nnð Þr


 �
nn; ð33Þ

with dh � N 0; rhð Þ and r denoting a random unit vector.
The initial values of x1;x2, and x3, which are three-

dimensional vectors, are perturbed at two levels. Denote
the vector of the nominal initial configuration as vn. Then,
the perturbed vector is given by

v ¼ sR dh;
S vnð Þr
S vnð Þr


 �
vn; ð34Þ

with dh � N 0; rhð Þ, s � N 0; rsð Þ, and r denoting a ran-
dom unit vector.

The initial values of RI
1;R

I
2, and RI

3, which are rotation
matrices, are perturbed at the level of the angle and axis.
Denote the rotation angle of the nominal initial configura-
tion as hn and the rotation axis of the nominal initial con-
figuration as nn. Then, the perturbed rotation is given as

R ¼ R hn þ dh;R dw;
S nnð Þr
S nnð Þr


 �
nn


 �
; ð35Þ
Fig. 2. Evolution of Id1=2.

9

with dh � N 0; rhð Þ, dw � N 0; rw

� �
, and r denoting a ran-

dom unit vector.
The perturbation parameters were chosen considering

the observer assumptions. Thus, the angular velocities
must be bounded and the degenerate attitude configura-
tions must be avoided. The standard deviation values for
each variable are given in Tables 1 and 2.

5.6. Simulation setup

For all trials, the vehicles are assumed identical and
cylindrical. Therefore, the moment of inertia is a diagonal
matrix with the entries respectively given by
m
12

3r2 þ h2
� �

; m
12

3r2 þ h2
� �

, and m
2
r2, where m ¼ 120 kg,

h ¼ 2 m, and r ¼ 1 m. Moreover, the external torque
applied to each vehicle is a sinusoidal signal, where each
component is given as

sF ¼ 0:5 sin fDtð Þ
in N.m, with f ¼ 1 rad s�1, which ensures that the angular
velocity is bounded and thus satisfying all the assumptions,
because its measurements were assumed unbiased. The true
values of the components of x1, which are identical to the
components of x2 and x3, are depicted in Fig. 3.

The ground truth of all measurements used in the atti-
tude reconstruction must be defined for each time instant.
Thus, it is assumed that the sensors have an appropriate
sampling rate. For simplicity, the vision-based measure-
ments are assumed to be taken by a focal plane sensor fac-
ing the body-fixed frame axes orthogonal to the highest
component of the vector. The standard deviation of the
several focal plane sensors is identical and given by

rd ¼ 17 � 10�6 rad, whereas the standard deviation of the

rate gyros is rxj ¼ 4:8 � 10�6 rad/s.

The initial proximity of the errors to the origin is con-
trolled by the initial estimates of the observer. Therefore,
the initial attitude estimates are given, respectively, by

R̂I
1 t0ð Þ ¼

0 0 �1

0 1 0

1 0 0

2
64

3
75;

R̂I
2 t0ð Þ ¼

1ffiffi
2

p 0 � 1ffiffi
2

p

0 1 0

� 1ffiffi
2

p 0 � 1ffiffi
2

p

2
64

3
75;

and
Table 1
Perturbed initial attitude standard deviations.

rh rw
[rad] [rad]

RI
1

p
2

p
4

RI
2

p
2

p
4

RI
3

p
2

p
4



Table 2
Perturbed initial angular velocities standard deviations.

rh rs

[rad]

x1
p
6 0.1

x2
p
6 0.1

x3
p
6 0.1

Fig. 3. Evolution of x1.

Fig. 4. Nominal simulation attitude errors.

Table 3
Perturbed inertial measurements standard deviations.

rh
[rad]

Id1
p
20

Id2
p
20

Id3
p
20

Id1=2
p
20

Id1=3
p
20
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R̂I
3 t0ð Þ ¼

1 0 0

0 �1 0

0 0 �1

2
64

3
75:

The initial estimates of the angular velocities for x̂1 and
x̂2are the zero vector, which means that the respective ini-
tial errors are /1 t0ð Þ ¼ x1 t0ð Þ and /2 t0ð Þ ¼ x2 t0ð Þ. Since the
third vehicle estimate is in manifold U 3, then /3 t0ð Þ ¼ 0, or
equivalently x̂3 t0ð Þ ¼ x3 t0ð Þ. Moreover, the observer con-
stant parameters are set to mj ¼ 1:5; pj ¼ 1, and Dj ¼ I.

The simulation interval is 60 s with a time step of 0.1 s.
In each iteration, the true values are updated according to
(2), (31) and (32). Then, the vision sensor and rate gyro
measurements are generated following the noise models
described in (29) and (30). Next, from the vision-based
measurements, the deterministic algorithm reconstructs
each attitude in the formation. Finally, the attitude esti-
mates are computed with (28), first the kinematics yield
new attitude estimates and then the new feedback term is
updated, by solving the respective equation numerically.
After the simulation is complete, the attitude estimates
are processed and the attitude errors, in matrix form,
10
computed from (8). Then, the error matrices are trans-
formed into the principal angle of the attitude error by

�j :¼ arccos
trace QI

j

� �
� 1

2

0
@

1
A

with j ¼ 1; 2; 3 and the values of �j in the interval 0; p½ �.
5.7. Monte Carlo setup

The Monte Carlo numerical implementation considers a
set of 1000 trials, in which the initial configuration is per-
turbed according to (33)-(35), with the standard deviations
presented in the Tables 1 and 2. Each trial follows the pro-
cedure given in the simulation setup description and the
maneuver is always given by the update in (32).
5.8. Simulation results

Two sets of results are considered in this analysis: one
with the nominal initial configuration results and another
with the Monte Carlo trials results. The attitude errors
are represented by their principle angle as an indication
of their magnitude. Another error considered is the norm
of the feedback parameter /j, which informs on the dis-

crepancies of the angular velocity errors. The nominal ini-
tial configuration attitude errors, for all three vehicles, are
given in Fig. 4, while the associated feedback parameters
are given in Fig. 5. In the Monte Carlo experiment, both
the reconstructed attitude error and the observer estimate
error are considered. The respective results for all 1000 tri-
als are condensed into their mean value relative to each
time instant. The associated standard deviation is com-
puted as well, which gives a more complete statistical rep-
resentation. Both are depicted in Figs. 6–8, where the line
represents the mean and the shaded area delimits the stan-
dard deviation from the mean of the respective instant of
time.

The results for the nominal initial configuration, in
Figs. 4 and 5, show that vehicle 3 converges to the correct



Fig. 5. Nominal simulation angular velocity errors.

Fig. 6. Monte Carlo results for �1.

Fig. 8. Monte Carlo results for �3.

P. Cruz et al. Advances in Space Research xxx (xxxx) xxx
attitude, even though it is initially in the unstable equilib-
rium set U 3. Another possible observation, is that the feed-
back terms converge to a value within a given error of the
zero vector due to sensor noise.

The results for the Monte Carlo trials, in Figs. 6–8, show
that the observer errors tend to a smaller error than the
error of the reconstructed attitude. Thus, the observer is
using the rate gyro information to filter the reconstructed
Fig. 7. Monte Carlo results for �2.

11
attitude errors and improve the accuracy of the estimation.
Secondly, from the shaded areas, which are representing
the standard deviation relative to the mean, the observer
attitude errors do not vary significantly from the mean,
despite the varying initial configuration of each trial. More
importantly, the sum of the standard deviation and mean
of the observer are lower than the analogous value of the
reconstructed attitude, which reinforces the conclusions
made regarding the respective mean values.

To summarize, if all assumptions are satisfied, that is the
angular velocity is bounded and unbiased, while the recon-
structed attitude exists and is unique, then the observer
estimate errors converge to close to the origin. Moreover,
these errors are smaller than the errors from the sensor atti-
tude reconstruction, which indicate that the observer is fil-
tering some of the noise of those sensors by using the rate
gyros.
6. Conclusions

A reconstructed attitude was used to design an attitude
observer, based on the Lagrange-d’Alembert principle of
variational mechanics. The observer error is locally expo-
nentially stable and converges to the origin for almost all
initial conditions. The remaining equilibrium points are
unstable and a zero measure subset of the domain. The
observer was applied to the three-vehicle heterogeneous
formations and tested using numerical simulations, where
the performance of the solution with sensor noise was
assessed. It was shown that the estimates in the unstable
equilibrium manifold converge to the true attitude as well.
Moreover, the numerical implementation showed that the
observer errors are lower than the attitude reconstruction
errors and thus the observer filters some of the errors in
the attitude reconstruction. The application to the three
vehicle heterogeneous formation is limited to cases where
the attitude can be reconstructed unambiguously, because
large errors in such variables result in the divergence of
the results from the zero error estimates, because the obser-
ver is driven directly by the reconstructed attitude. This is
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not a limitation of the observer. Instead, it is an intrinsic
theoretical limitation of the problem framework, as dis-
cussed in (Cruz and Batista, 2020).
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