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Abstract
The problem of rigid body pose estimation is treated in discrete-time via discrete
Lagrange–d’Alembert principle and discrete Lyapunov methods. The position and
attitude of the rigid body are to be estimated simultaneously with the help of vision
and inertial sensors. For the discrete-time estimation of pose, the continuous-time rigid
body kinematics equations are discretized appropriately. We approach the pose esti-
mation problem asminimizing the energies stored in the errors of estimated quantities.
With the help of measurements obtained through optical sensors, artificial rotational
and translation potential energy-like terms have been designed. Similarly, artificial
rotational and translation kinetic energy-like terms have been devised using inertial
sensormeasurements. This allows us to construct a discrete-timeLagrangian as the dif-
ference of the kinetic and potential energy-like terms, towhich aLagrange–d’Alembert
principle is applied to obtain an optimal pose estimation filter. The dissipation terms
in the optimal filter are designed through discrete Lyapunov analysis on a suitably
constructed Morse–Lyapunov function, and the overall scheme is proved to be almost
globally asymptotically stable. The filtering scheme is simulated using noisy sensor
data to verify the theoretical properties.
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1 Introduction

The pose of a rigid body with respect to a frame is a transformation from a body-fixed
frame to an inertial frame. The pose encapsulates the position of the center of mass
and orientation of the rigid body. Estimation of the pose of a rigid body has various
applications in the control of spacecraft, ground vehicles, underwater vehicles for
example. Generally, the position and attitude are estimated with the help of onboard
inertial sensors coupled with a dynamic model. However, when available, external
measurements such as GPS or tracking data of multiple points on the body are also
used for pose estimation (Amelin and Miller 2014; Vasconcelos et al. 2008; Vertechy
and Castelli 2007). Some techniques combine inertial sensors, vision sensors and
external measurements to estimate the rigid body pose. Furthermore, it is common in
several applications to operate in GPS denied environments. Therefore, an estimation
scheme relying on inertial and vision sensors with proven stability properties and a
large domain of attraction is necessary. Additionally, robustness to uncertainties and
noise is required.

In recent times, several stable nonlinear estimators evolving on non-Euclidean
spaces such as SO(3) or SE(3) have been presented with provably large domain of
attraction. A landmark-based nonlinear pose observer is proposed in Vasconcelos et al.
(2007) which is almost globally exponentially stable on SE(3). The pose estimation
scheme in Rehbinder and Ghosh (2003) uses line-based dynamic vision and inertial
sensors to provide a locally convergent attitude observer and subsequently a position
estimator. A quaternion-based pose estimator is presented in Filipe et al. (2015) where
cost functions based on estimation errors are constructed in discrete-time and mini-
mized to obtain a filtering scheme. The attitude estimation problem based on vector
measurements was first proposed as an optimization problem on SO(3) by Wahba
(1965). The cost function is known as Wahba’s cost function. In Vasconcelos et al.
(2010), the authors devise a pose estimator using a Lyapunov function defined as the
difference between the estimated and the measured landmark coordinates. For attitude
estimation, similar ideas are used in Mahony et al. (2008), Zamani et al. (2013), Izadi
and Sanyal (2014), Bhatt et al. (2020b). In Izadi and Sanyal (2016), the authors applied
the Lagrange–d’Alembert principle to a Lagrangian constructed through state estima-
tion errors to obtain an optimal filtering scheme for the rigid body pose. However,
the work in Izadi and Sanyal (2016) provides a continuous-time pose estimator by
applying the (continuous-time) Lagrange–d’Alembert principle to a Lagrangian. The
estimator is then discretized for numerical implementation, which voids the theoret-
ical guarantee of asymptotic stability provided by the continuous-time estimator. In
this work, we obtain a discrete-time pose estimation scheme by applying the discrete
Lagrange–d’Alembert principle on a discrete-time Lagrangian. Furthermore, we also
prove guaranteed asymptotic stability by performing the discrete Lyapunov analysis
of the system and prove almost global asymptotic stability. Discrete-time observers
for only attitude with stability properties can be found in Bhatt et al. (2020a, b).

In this paper, we derive an optimal pose estimation scheme by minimizing the
“energy” stored in the state estimation errors. A discrete-time Lagrangian has been
devised, and the discrete Lagrange–d’Alembert principle from variational mechanics
(Marsden andWest 2001) is employed to obtain an optimal filtering scheme. It is then
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proved to be almost globally asymptotically stable via discrete Lyapunov analysis. The
pose of the rigid body is expressed in SE(3) without employing any local coordinates
(such as Euler angles or quaternion) and hence globally non-singular. Furthermore, the
estimation scheme presented here relies only on onboard sensor data. We also do not
make assumptions on the statistical properties of the measurement noise as is usually
the case for Kalman filter-based estimation schemes.

This paper is organized as follows. In Sect. 2, relevant notations are introduced
and the procedure to estimate rigid body pose using measurements is explained. The
continuous-time rigid body kinematics is discretized in Sect. 3. Section 4 contains
the application of variational mechanics to obtain a filter equation for pose estimation.
The filter equations obtained in Sect. 4 are proved to be asymptotically stable using the
discrete-time Lyapunov method in Sect. 5. Filter equations are numerically verified
with realistic measurements (corrupted by bounded noise) in Sect. 6. Finally, Sect. 7
presents the concluding remarks and possible directions future work.

2 Notation and Problem Formulation

2.1 Notation and Preliminaries

We define the trace inner product on R
m×n as

〈A1, A2〉 := trace(AT
1 A2).

The group of orthogonal frame transformations on R
3 is defined by O(3) := {Q ∈

R
3×3 | det(Q) = ±1}. The special orthogonal group on R

3 is denoted as SO(3)
and defined as SO(3) := {R ∈ R

3×3 | RTR = RRT = I3}. Let there be some
R ∈ SO(3) and b ∈ R

3. The corresponding Lie algebra is denoted as so(3) := {M ∈
R
3×3 | M + MT = 0}. The special Euclidean group, SE(3), corresponds to the set of

all 4 × 4 transformation matrices of the form,

SE(3) :=
{(

R b
0 1

)
∈ R

4×4
∣∣∣∣ R ∈ SO(3) and b ∈ R

3
}

.

Let (·)× : R3 → so(3) ⊂ R
3×3 be the skew-symmetric matrix cross product operator

denoting the vector space isomorphism between R
3 and so(3):

v× =
⎡
⎣v1

v2
v3

⎤
⎦

×
:=

⎡
⎣ 0 −v3 v2

v3 0 −v1
−v2 v1 0

⎤
⎦ .

Further, let vex(·) : so(3) → R
3 be the inverse of (·)×. The map exp (·) : so(3) →

SO(3) is defined as

exp (M) :=
∞∑
i=0

1

k!M
k .
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We define Ad : SO(3) × so(3) → so(3) as

AdRΩ× := RΩ×RT = (RΩ)×.

For the remainder of the article, the phrase “consider the time interval [t0, T ]” indicates
that the estimation process will be carried out over the time interval [t0, T ] and is
divided into N equal subintervals [ti , ti+1] for i = 0, 1, . . . , N with tN = T . The time
step size is denoted as, h := ti+1 − ti . Further, given a state z(t), zi := z(ti ). Give a
quantity β, βm denotes its measurement through an onboard sensor.

2.2 Navigation Using Optical and Inertial Sensors

Assume that a rigid body exhibits rotational and translation motion in an environment.
The pose estimation of the rigid body implies estimation of the orientation and position
of a frame S, fixed to the rigid body center of mass with respect to some inertial frame
O , fixed to the observed environment as shown in Fig. 1. Let R ∈ SO(3) be the rotation
matrix from S to O and b ∈ R

3 be the location of the origin of S in the frame O . We
can write the pose g ∈ SE(3) of the rigid body as,

g :=
[
R b
0 1

]
. (1)

If there exists a column vectorψ = [x y z]T ∈ R
3, then it can be represent as a column

vector γ = [x y z 1]T inR3 as a subspace ofR4. Furthermore, g ∈ SE(3) acts on this
vector by a combination of rotation and translation as follows: gγ = Rψ + b.

Assume that there are r g number of inertial vectors (such as gravity vector,magnetic
field vector) whose locations in the frame O are known (denoted as e j for j =
1, 2, . . . , r g) and can be measured in the frame S via inertial sensors (denoted as esj ).
Furthermore, let there be beacons placed with their position vectors known (ro in
number)in the inertial frame O (denoted as p j for j = 1, 2, . . . , ro). The idea is to
measure the locations of these beacons in the vehicle-fixed frame S (denoted a j ) with
the help of optical sensors (marked as green in Fig. 1).

It is important to clarify at this stage that at any given discrete-time instant ti , the
number of observed beacons and inertial vectors by the vehicle could be varying.
We therefore introduce the notations, r gi and roi to denote the corresponding inertial
and optical measurements available. It should be evident that r gi ∈ {1, 2, . . . , r g} and
roi ∈ {1, 2, . . . , ro}. We therefore have

(roi
2

)
unique relative position vectors, which are

the vectors connecting any two of these optical beacon measurements. If two or more
optical measurements are available, the number of vector measurements that can be
used to estimate attitude are

(roi
2

)+r gi . It has to be noted that attitude of the body can be

uniquely computed only if
(roi
2

)+r gi ≥ 2, . If at least two inertial vector measurements
are available then beaconmeasurements are not required to estimate attitude, however,
at least one beacon measurement is necessary for the estimation of relative position.
It has been assumed that the velocities of the vehicle can be directly measured.

123



Journal of Nonlinear Science (2022) 32 :86 Page 5 of 23 86

Fig. 1 Inertial landmarks in frame O as observed from vehicle S with optical measurements. O—inertial
frame, S—body-fixed frame, b—position of the center of mass of the body, p j—position of the j th beacon

in frame O , a j—position of the j th beacon in frame S, sk—position of the kth optical sensor in frame S,

qkj—range from kth optical sensor to j th beacon

2.2.1 Pose Measurement Model

Employing the notation from Fig. 1, at the time instant ti , we obtain

p j = R(qkj + sk) + b = Ra j + b, (2)

in the absence of measurement noise. Here j ∈ {1, 2, . . . roi }. In the presence of
measurement noise, amj can be written as

amj = (qkj )
m + sk,

Let p̄ = 1
roi

∑roi
j=1 p j be the mean of vectors p j , and ām = 1

roi

∑roi
j=1 a

m
j be the mean

of vectors amj . We obtain the following relation from (2):

ām = RT( p̄ − b) + ζ, (3)

where ζ is the additive measurement noise obtained by averaging the measurement
noise. As stated in the previous subsection, we obtain n := (roi

2

)
relative vectors from

optical measurements. They are denoted as d j = pλ − pl in O and the corresponding
vectors in the frame S are denoted as l j = aλ − al with λ, l ∈ {1, 2, . . . , roi }; λ 	= l.
We have

d j = Rl j ⇒ D = RL. (4)
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Putting them in the matrix form as D = [d1 . . . dn] and L = [l1 . . . ln] ∈ R
3×n , we

obtain
Lm = RTD + L , (5)

where L ∈ R
3×n consists of the additive noise in the vector measurements made in

the body frame S.

3 Discretization of Rigid Body Kinematics

Consider the time interval [t0, T ]. Let Ω ∈ R
3 and ν ∈ R

3 be the rotational and
translational velocity of the rigid body, respectively, in frame S. R ∈ SO(3) is the
rotation matrix from body frame to inertial frame and b ∈ R

3 is the position of rigid
body with respect to frame O expressed in frame S. The generalized velocity of the
rigid body is constructed as ξ = [Ω ν]T and the pose of the rigid body is,

SE(3) � g =
[
R b
0 1

]
.

The continuous-time rigid body kinematics are:

Ṙ = RΩ×, ḃ = Rν ⇒ ġ = gξ∨,

where ξ∨ :=
[
Ω× ν

0 0

]
.

For the discrete-time pose estimation of the rigid body, the continuous-time kine-
matics are discretized as

Ri+1 = Ri exp

(
h

2
(Ωi+1 + Ωi )

×
)

, bi+1 = bi + h

2
Ri+1 (νi + νi+1) . (6)

Therefore, the discrete-time kinematics of the rigid body pose can be expressed as

gi+1 = gi

[
exp

( h
2 (Ωi+1 + Ωi )

×)
exp

( h
2 (Ωi+1 + Ωi )

×) h
2 (νi + νi+1)

0 1

]
. (7)

4 Discrete-Time Estimation of Motion fromMeasurements

Consider the time interval [t0, T ]. Let Ω̂i and ν̂i be the estimated rotational and trans-
lational velocity of the rigid body, respectively, in the frame S at time instant ti . R̂i

is the estimated rotation matrix from S to O and b̂i is the estimated position of rigid
body with respect to frame O expressed in frame S at time instant ti . The generalized
estimated velocity of the rigid body is constructed as ξ̂i := [Ω̂i ν̂i ]T. From (7), the
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estimated pose and its kinematics can be computed as

SE(3) � ĝi :=
[
R̂i b̂i
0 1

]
,

ĝi+1 = ĝi

[
exp

(
h
2 (Ω̂i+1 + Ω̂i )

×
)
exp

(
h
2 (Ω̂i+1 + Ω̂i )

×
)
h
2

(
ν̂i + ν̂i+1

)
0 1

]
. (8)

The pose estimation error hi at time instant ti can be computed as

SE(3) � ḡi := gi ĝ
−1
i =

[
Qi bi − Qi b̂i
0 1

]
=

[
Qi xi
0 1

]
, (9)

where Qi = Ri R̂T
i is the attitude estimation error and xi = bi − Qi b̂i is the position

estimation error. The estimation error in the generalized velocity is denoted as

ϕi := ϕ(ξmi , ξ̂i ) =
[
ωi

vi

]
= ξmi − ξ̂i , (10)

where ωi = Ωm
i − Ω̂i is the angular velocity estimation error and vi = νmi − ν̂i is

the translational velocity estimation error. Here,Ωm
i and νmi denote the measurements

of angular and translational velocities, respectively, at time instant ti . The discrete-
time kinematics of the attitude estimation error and the position estimation error are
evaluated as

Qi+1 = Ri+1 R̂
T
i+1

= Qi R̂i exp

(
h

2
(ωi+1 + ωi )

×
)
R̂T
i , (11)

and

xi+1 = bi+1 − Qi+1b̂i+1

= bi + Ri+1
h

2
(νi + νi+1) − Qi+1

(
b̂i + R̂i+1

h

2

(
ν̂i + ν̂i+1

))

= bi − Qi+1b̂i + Ri+1
h

2
(vi + vi+1)

= bi − Qi R̂i exp

(
h

2
(ωi+1 + ωi )

×
)
R̂T
i b̂i + Ri+1

h

2
(vi + vi+1) .

Approximating exp
( h
2 (ωi+1 + ωi )

×)
by the first two terms in the expansion as

exp

(
h

2
(ωi+1 + ωi )

×
)

≈ I + h

2
(ωi+1 + ωi )

×, (12)
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we have,

xi+1 = bi − Qi b̂i − h

2
Qi

(
R̂i (ωi+1 + ωi )

)× + Ri+1
h

2
(vi + vi+1)

= xi − h

2
Qi

(
R̂i (ωi+1 + ωi )

)× + Ri+1
h

2
(vi + vi+1) . (13)

It has to be noted that approximation in (12) is accurate for small values of h and may
affect the stability results for very high values of h.

4.1 Discrete-time optimal pose estimator based on Lagrange–d’Alembert
principle

The error in the attitude estimation is encapsulated by Wahba’s cost function (Wahba
1965). Thus, the artificial potential function for rotation estimation error is defined as

Ur
i := Ur (ĝi , L

m
i , Di ) = 1

2
kp〈Di − R̂i L

m
i , (Di − R̂i L

m
i )Wi 〉, (14)

where D and Lm are as defined in (4) and (5), W = diag(w j ) ∈ R
n×n is a positive

definite diagonal matrix of the weight factors for the measured directions, and kp > 0
is a scalar gain. The artificial potential function for translation estimation error is
defined as:

U t
i := U t (ĝi , ā

m
i , p̄i ) = κ ‖yi‖2 := κ|| p̄i − R̂i ā

m
i − b̂i ||2, (15)

where p̄ and ām are as per (3) and κ > 0 is a scalar gain. The total artificial potential
energy will be the sum of the artificial rotational and translational potential functions:

Ui := U(ĝi , L
m
i , Di , ā

m
i , p̄i ) = Ur (ĝi , L

m
i , Di ) + U t (ĝi , ā

m
i , p̄i )

= 1

2
kp〈Di − R̂i L

m
i , (Di − R̂i L

m
i )Wi 〉

+ κ|| p̄i − R̂i ā
m
i − b̂i ||2. (16)

We define the artificial kinetic energy of the system as a quadratic in the generalized
velocity estimation error:

Ti := T
(
ϕ(ξmi , ξi ), ϕ(ξmi+1, ξi+1)

)
= m

2

(
ϕ(ξmi , ξi ) + ϕ(ξmi+1, ξi+1)

)T (
ϕ(ξmi , ξi ) + ϕ(ξmi+1, ξi+1)

)
, (17)

where m > 0 is a scalar, and ϕ(ξmi , ξi ) and ϕ(ξmi+1, ξi+1) are according to (10).
Note that the artificial kinetic energy Ti can also be written as the summation of

the artificial rotational kinetic energy T r
i and artificial translational kinetic energy T t

i
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employing (10) as

Ti = T r (ωi+1, ωi ) + T t (vi+1, vi ) = T r
i + T t

i

= 1

2
(ωi+1 + ωi )

Tm(ωi+1 + ωi ) + 1

2
(vi+1 + vi )

Tm(vi+1 + vi ). (18)

Let the discrete-time Lagrangian be defined as the difference between the artificial
kinetic energy and artificial potential energy terms:

Li := L (ωi+1, ωi , vi+1, vi , ĝi , L
m
i , Di , ā

m
i , p̄i )

= T r (ωi+1, ωi ) + T t (vi+1, vi ) − Ur (ĝi , L
m
i , Di ) − U t (ĝi , ā

m
i , p̄i )

= 1

2
(ωi+1 + ωi )

Tm(ωi+1 + ωi ) + 1

2
(vi+1 + vi )

Tm(vi+1 + vi )

− 1

2
kp〈Di − R̂i L

m
i , (Di − R̂i L

m
i )Wi 〉 − κ|| p̄i − R̂i ā

m
i − b̂i ||2. (19)

If the estimation process is started at time t0, then the discrete-time action functional
corresponding to the discrete-time Lagrangian (19) over the time interval [t0, T ] can
be expressed as

sd(Li ) := h
N∑
i=0

{
1

2
(ωi+1 + ωi )

Tm(ωi+1 + ωi ) + 1

2
(vi+1 + vi )

Tm(vi+1 + vi )

− 1

2
kp〈Di − R̂i L

m
i , (Di − R̂i L

m
i )Wi 〉 − κ|| p̄i − R̂i ā

m
i − b̂i ||2

}
. (20)

We are now ready to state our first result on optimal pose estimation.

Proposition 1 The variational filter for pose minimizing the action functional sd(Li )

defined in (20) is given as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ϕi+2 + ϕi+1 = exp
(
− h

2 (Ω̂i+2 + Ω̂i+1)
×
) [

(ϕi+1 + ϕi ) − h
2m Z ′

i − h
2m ηi+1

]
ξ̂i = ξmi − ϕi ,

ĝi+1 = ĝi

[
exp

(
h
2 (Ω̂i+1 + Ω̂i )

×
)
exp

(
h
2 (Ω̂i+1 + Ω̂i )

×
)
h
2

(
ν̂i + ν̂i+1

)
0 1

]
,

(21)
where ηi+1 contains Rayleigh dissipation terms for angular and translational motions
defined as

ηi+1 :=
[
τi+1
fi+1

]
,

with Z ′
i := Z ′(ĝi+1, ĝi , Lm

i+1, Di+1, āmi+1, τi , fi ) defined by

Z ′
i :=

[
−kpSΓi+1(R̂i+1) + m(ν̂i+1 + νi )

×(vi+1 + vi ) + κ(āmi+1)
× R̂T

i+1yi+1

κ R̂T
i+1yi+1,

]
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where SΓi (R̂i ) := vex(Γ T
i R̂i − R̂T

i Γi ) and Γi := DiWi (Lm
i )T.

Proof Consider a first variation in the discrete attitude estimate as

δ R̂i = R̂iΣ
×
i , (22)

where Σi ∈ R
3 represents a variation for the discrete attitude estimate. For fixed end-

point variations, we have Σ0 = ΣN = 0. A first-order approximation is to assume
that Ω̂× and δΩ̂× commute. Taking the first variation of the discrete-time attitude
kinematics according to the first equation of (6) and comparing with (22), we get

δ R̂i+1 = δ R̂i exp

(
h

2
(Ω̂i+1 + Ω̂i )

×
)

+ h

2
R̂i exp

(
h

2
(Ω̂i+1 + Ω̂i )

×
)

δ(Ω̂i+1 + Ω̂i )
×

= R̂i+1Σ
×
i+1. (23)

The above can be rearranged to

R̂i+1
h

2
δ(Ω̂i+1 + Ω̂i )

× = R̂i+1Σ
×
i+1

− R̂i+1Adexp
(
− h

2 (Ω̂i+1+Ω̂i )
×
)Σ×

i

⇒ h

2
δ(Ω̂i+1 + Ω̂i )

× = Σ×
i+1 − Ad

exp
(
− h

2 (Ω̂i+1+Ω̂i )
×
)Σ×

i , (24)

which can be equivalently written as an equation in R
3 as follows:

h

2
δ(Ω̂i+1 + Ω̂i ) = Σi+1 − exp

(
−h

2
(Ω̂i+1 + Ω̂i )

×
)

Σi . (25)

Taking the variation of ωi = Ωm
i − Ω̂i

δ(ωi+1 + ωi ) = −δ(Ω̂i+1 + Ω̂i ). (26)

Next, we assume the variation in b̂i to be,

δb̂i = R̂iρi , (27)

where ρi ∈ R
3 represents the variation in the discrete position estimate. For fixed end-

point variations, we have ρ0 = ρN = 0. Taking the first variation of the discrete-time
position kinematics according to the second equation of (6) and comparing with (27),
we get
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δb̂i+1 = δb̂i + δ R̂i+1
h

2
(ν̂i+1 + ν̂i ) + R̂i+1

h

2
δ(ν̂i+1 + ν̂i )

⇒ R̂i+1ρi+1 = R̂iρi + R̂i+1Σ
×
i+1

h

2
(ν̂i+1 + ν̂i ) + R̂i+1

h

2
δ(ν̂i+1 + ν̂i )

⇒ h

2
δ(ν̂i+1 + ν̂i ) = ρi+1 − exp

(
−h

2
(Ω̂i+1 + Ω̂i )

×
)

ρi − Σ×
i+1

h

2
(ν̂i+1 + ν̂i )

(28)

and the variation of vi = νmi − ν̂i gives us

δ(vi+1 + vi ) = −δ(ν̂i+1 + ν̂i ). (29)

We have yi = p̄i − R̂i āmi − b̂i . Therefore,

δyi = −δ R̂i ā
m
i − δb̂i

= R̂iΣ
×
i āmi − R̂iρi

= R̂i

((
āmi

)×
Σi − ρi

)
. (30)

Consider the artificial potential energy term in (14). Taking its first variation with
respect to the estimated attitude R̂, we get

δUr
i = kp

2

{
〈−δ R̂i L

m
i , (Di − R̂i L

m
i )Wi 〉 +〈Di − R̂i L

m
i , (−δ R̂i L

m
i )Wi 〉

}

= kp〈−δ R̂i L
m
i , (Di − R̂i L

m
i )Wi 〉

= kp〈−R̂iΣ
×
i , (Di − R̂i L

m
i )Wi 〉

= kptr
(
(Lm

i )TΣ×
i R̂T

i (Di − R̂i L
m
i )Wi

)

= kptr
(
(Σ×

i )TLm
i Wi D

T
i R̂i

)

= kp〈Σ×
i , Lm

i Wi D
T
i R̂i 〉

= kp
1

2
〈Σ×, Lm

i Wi D
T
i R̂i − R̂T

i DiWi (L
m
i )T〉

= kp
1

2
〈Σ×

i , Γ T
i R̂i − R̂T

i Γi 〉 = kpS
T
Γi

(R̂i )Σi . (31)

Similarly, taking the first variation of the artificial potential energy function in (15)
and using results from (30), we get

δU t
i = κ yTi δyi = κ yTi

((
āmi

)×
Σi − ρi

)
. (32)

Similarly, we also obtain the variations in artificial kinetic energies as follows

δT r
i = 2m

h
(ωi+1 + ωi )

T
(
exp

(
−h

2
(Ω̂i+1 + Ω̂i )

×
)

Σi − Σi+1

)
, (33)
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δT t
i = 2m

h
(vi+1 + vi )

T
(
exp

(
−h

2
(Ω̂i+1 + Ω̂i )

×
)

ρi + Σ×
i+1

h

2
(ν̂i+1 + ν̂i ) − ρi+1

)
,

(34)

with the help of relations from (25) to (29). Taking the first variation of the discrete-
time action sum in (20) and employing (31) to (34), we obtain

δsd = h
N∑
i=0

{
δT r

i + δT t
i − δUr

i − δU t
i
}

= h
N∑
i=0

{
2m

h
(ωi+1 + ωi )

T
(
exp

(
−h

2
(Ω̂i+1 + Ω̂i )

×
)

Σi − Σi+1

)

+ 2m

h
(vi+1 + vi )

T
(
exp

(
−h

2
(Ω̂i+1 + Ω̂i )

×
)

ρi + Σ×
i+1

h

2
(ν̂i+1 + ν̂i ) − ρi+1

)

−kpS
T
Γi

(R̂i )Σi − κ yTi

((
āmi

)×
Σi − ρi

)}
. (35)

We now apply the discrete Lagrange–d’Alembert principle (Marsden and West
2001) with two Rayleigh dissipation terms τi ∈ R

3 and fi ∈ R
3 for angular and

translational motion, respectively,

δsd + h
N−1∑
i=0

{
τTi Σi + f Ti ρi

}
= 0

⇒
N−1∑
i=0

{
2m(ωi+1 + ωi )

T
(
exp

(
−h

2
(Ω̂i+1 + Ω̂i )

×
)

Σi − Σi+1

)

+ 2m(vi+1 + vi )
T
(
exp

(
−h

2
(Ω̂i+1 + Ω̂i )

×
)

ρi + Σ×
i+1

h

2
(ν̂i+1 + ν̂i ) − ρi+1

)

−kphS
T
Γi

(R̂i )Σi − κhyTi

((
āmi

)×
Σi − ρi

)
hτTi Σi + h f Ti ρi

}
= 0. (36)

Splitting (36) into two equations assuming independence of Σi and ρi will give us

2m(ωi+2 + ωi+1)
T exp

(
−h

2
(Ω̂i+2 + Ω̂i+1)

×
)

− 2m(ωi+1 + ωi )
T

− hm(vi+1 + vi )
T(ν̂i+1 + ν̂i )

× − −kphS
T
Γi+1

(R̂i+1)

− κhyTi+1

(
āmi+1

)× + hτTi+1 = 0, (37)

and

2m(vi+2 + vi+1)
T exp

(
−h

2
(Ω̂i+2 + Ω̂i+1)

×
)

− 2m(vi+1 + vi )
T

+ κhyTi+1 R̂i+1 + h f Ti = 0. (38)

123



Journal of Nonlinear Science (2022) 32 :86 Page 13 of 23 86

The above equations can be simplified to obtain

ωi+2 + ωi+1 = exp

(
−h

2
(Ω̂i+2 + Ω̂i+1)

×
)[

ωi+1 + ωi + h

2m

{
kpSΓi+1(R̂i+1)

− m(ν̂i+1 + νi )
×(vi+1 + vi ) − κ(āmi+1)

× R̂T
i+1yi+1 − τi+1

}] = 0,

(39)

and

vi+2 + vi+1 = exp

(
−h

2
(Ω̂i+2 + Ω̂i+1)

×
)[

vi+1 + vi

− h

2m

{
κ R̂T

i+1yi+1 + fi+1

} ]
= 0, (40)

which in turn can be combined to obtain (21). ��

5 Discrete-Time Asymptotically Stable and Optimal Pose Estimator

For the discrete-time Lyapunov analysis, we use the same combination of artificial
potential energy-like terms as defined in (16). We construct a new kinetic energy-like
term to encapsulate the error in the generalized velocity estimation. This term will aid
us in the Lyapunov analysis. We propose the following kinetic energy-like term:

T l
i := T l (ϕ(ξmi , ξi )

) = m

2
ϕ(ξmi , ξi )

Tϕ(ξmi , ξi ), (41)

where m > 0 is a scalar. We carry out the Lyapunov analysis in the absence of
measurement errors. The following Lemma provides the form of the artificial potential
energy term in the absence of measurement errors.

Lemma 1 In the absence of measurement noise, the artificial potential energy defined
in (16) takes the form

Ui = U(ĝi , L
m
i , Di , ā

m
i , p̄i ) = kp〈I − Qi , Ki 〉 + κ yTi yi , (42)

where Ki = DiWi DT
i and yi = y(hi , p̄i ) = QT

i xi + (I − QT
i ) p̄i .

Proof In the absence ofmeasurements errors,wehave Lm
i = Li , āmi = āi and ξmi = ξi .

The rotational potential function can be rewritten as

Ur (ĝi , L
m
i , Di ) = kp

2
〈Di − R̂i L

m
i , (Di − R̂i L

m
i )Wi 〉

= kp
2

〈 I − Ri R̂
T
i , DiWi D

T
i 〉

⇒ Ur (Qi ) = kp〈 I − Qi , Ki 〉 where Ki = DiWi D
T
i .
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Since we have R̂i Li = QT
i Di and b̂i = QT

i (bi − xi ) we get

yi = y(hi , p̄i ) = p̄i − R̂i āi − b̂i = QT
i xi + (I − QT

i ) p̄i ,

as the form of potential energy in the absence of measurement errors. ��
We state the following assumption that is relevant for the proof of asymptotic

stability.

Assumption 1 The measured beacons and inertial vectors are fixed throughout the
estimation process which results in Ki = K and p̄i = p̄ for some constants K ∈ R

n×n

and p̄ ∈ R
3 for all ti .

We are now ready to state themain result of this article on an optimal asymptotically
stable pose filter.

Theorem 2 Consider the following form of the dissipation term in (43)

ηi+1 = 2

h

{
m(ϕi+1 + ϕi ) − h

2
Z ′
i

− m

m + l
exp

(
h

2
(Ω̂i+2 + Ω̂i+1)

×
) [

2mϕi+1 − hZi+1
] }

. (43)

Then the resulting nonlinear pose estimator given by,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ϕi+1 = 1
m+l [(m − l)ϕi − hZi ]

ξ̂i = ξmi − ϕi ,

ĝi+1 = ĝi

[
exp

(
h
2 (Ω̂i+1 + Ω̂i )

×
)
exp

(
h
2 (Ω̂i+1 + Ω̂i )

×
)
h
2

(
ν̂i + ν̂i+1

)
0 1

]
,

(44)
where and Zi = Z(ĝi , Lm

i , Di , āmi , p̄i ) is defined by

Z(ĝi , L
m
i , Di , ā

m
i , p̄i ) =

[
−kpSΓi (R̂i ) + κ R̂T

i

(
QT

i ( p̄ − bi )
)×

(yi+1 + yi )
κ R̂T

i+1(yi+1 + yi )

]
(45)

where Γi = DiWi (Lm
i )T, SΓi (R̂i ) = vex(Γ T

i R̂i − R̂T
i Γi ) and l > 0, l 	= m, is

asymptotically stable under Assumption 1 at the estimation error state (ḡi , ϕi ) =
(I , 0). Further, the domain of attraction of (ḡi , ϕi ) = (I , 0) is a dense open subset of
SE(3) × R

6.

Proof We choose the following discrete-time Lyapunov candidate:

Vi := V (Qi , hi , p̄i ) := Ui + Ti ,

The stability of the attitude and angular velocity error can be shown by analyzing
ΔVi = ΔUi + ΔTi .
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Using Assumption 1, we first calculate

ΔUr
i = Ur

i+1 − Ur
i = kp〈 I − Qi+1, K 〉 − kp〈 I − Qi , K 〉,

ΔUr
i = kp〈 Qi − Qi+1, K 〉 = −kp〈ΔQi , K 〉,

where ΔQi = Qi+1 − Qi . Now,

ΔQi = Qi+1 − Qi

= Qi

[
R̂i exp

(
h

2
(ω̂i+1 + ω̂i )

×
)
R̂T
i − I

]
.

Approximating exp
( h
2 (ω̂i+1 + ω̂i )

×)
as shown in (12), we have

ΔQi = Qi

[
R̂i

(
I + h

2
(ω̂i+1 + ω̂i )

×
)
R̂T
i − I

]

= h

2
Qi

(
R̂i (ω̂i+1 + ω̂i )

× R̂T
i

)

= h

2
Qi

(
R̂i (ω̂i+1 + ω̂i )

)×
.

In the absence of measurement errors, we have Lm
i = RT

i Di . Therefore,

ΔUr
i = −kph

2

〈
Qi

(
R̂i (ωi+1 + ωi )

)×
, Ki

〉

= −kph

2

〈
Ri (ωi+1 + ωi )

× R̂T
i , DiWi D

T
i

〉

= −kph

2

〈
(ωi+1 + ωi )

× R̂T
i , RT

i DiWi D
T
i

〉

= −kph

2

〈
(ωi+1 + ωi )

× R̂T
i , Lm

i Wi D
T
i

〉
.

We can further simplify the above expression using Γi = DiWi (Lm
i )T.

ΔUr
i = −kph

2

〈
(ωi+1 + ωi )

×, Γ T
i R̂i

〉

= −kph

4

〈
(ωi+1 + ωi )

×, Γ T
i R̂i − R̂T

i Γi

〉

= −kph

2
(ωi+1 + ωi )

TSΓi (R̂i )

= −h

2
(ϕi+1 + ϕi )

T
[
kpSΓi (R̂i )

0

]
(46)

where SΓi (R̂i ) = vex(Γ T
i R̂i − R̂T

i Γi ).
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Similarlywecan compute the change in the translational potential energy as follows:

ΔU t
i = U t (yi+1) − U t (yi )

= (yi+1 − yi )
Tκ(yi+1 + yi )

ΔU t
i = (yi+1 − yi )

Tκ(yi+1 + yi ).

Under Assumption 1, we have,

yi = QT
i xi + (I − QT

i ) p̄

yi+1 = QT
i+1xi+1 + (I − QT

i+1) p̄. (47)

Therefore, the discrete-time evolution of yi is

yi+1 − yi = QT
i+1bi+1 − b̂i+1 −

(
QT

i bi − b̂i
)

+ (Qi − Qi+1)
T p̄

= R̂i+1R
T
i+1

(
bi + Ri+1

h

2
(νi + νi+1)

)
− QT

i bi

−
(
b̂i + R̂i+1

h

2

(
ν̂i + ν̂i+1

) − b̂i

)

= (Qi+1 − Qi )
T(bi − p̄) + R̂i+1

h

2
(vi + vi+1)

= h

2

[
Qi

(
R̂i (ωi+1 + ωi )

)×]T
(bi − p̄) + R̂i+1

h

2
(vi + vi+1)

= −h

2

(
R̂i (ωi+1 + ωi )

)×
QT

i (bi − p̄) + R̂i+1
h

2
(vi + vi+1)

= h

2

(
QT

i (bi − p̄)
)×

R̂i (ωi+1 + ωi ) + R̂i+1
h

2
(vi + vi+1) . (48)

Using (48), we obtain

ΔU t
i = (yi+1 − yi )

Tκ(yi+1 + yi )

= κh

2

[
(ωi+1 + ωi )

T R̂T
i

(
QT

i ( p̄ − bi )
)× + (vi + vi+1)

T R̂T
i+1

]
(yi+1 + yi )

= h

2

[
ωi+1 + ωi

vi + vi+1

]T [
κ R̂T

i

(
QT

i ( p̄ − bi )
)×

(yi+1 + yi )
κ R̂T

i+1(yi+1 + yi )

]

= h

2
(ϕi+1 + ϕi )

T

[
κ R̂T

i

(
QT

i ( p̄ − bi )
)×

(yi+1 + yi )
κ R̂T

i+1(yi+1 + yi )

]
. (49)

Similarly we can compute the change in the kinetic energy as follows:

ΔTi = T (ϕi+1) − T (ϕi )
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= (ϕi+1 + ϕi )
Tm

2
(ϕi+1 − ϕi ). (50)

Using values from (46), (49) and (50), we obtain

ΔVi = ΔUr
i + ΔU t

i + ΔTi

= −h

2
(ϕi+1 + ϕi )

T
[
kpSΓi (R̂i )

0

]
+ (ϕi+1 + ϕi )

Tm

2
(ϕi+1 − ϕi )

+ h

2
(ϕi+1 + ϕi )

T

[
κ R̂T

i

(
QT

i ( p̄ − bi )
)×

(yi+1 + yi )
κ R̂T

i+1(yi+1 + yi )

]

= 1

2
(ϕi+1 + ϕi )

T {m(ϕi+1 − ϕi )

+h

[
−kpSΓi (R̂i ) + κ R̂T

i

(
QT

i ( p̄ − bi )
)×

(yi+1 + yi )
κ R̂T

i+1(yi+1 + yi )

]}
. (51)

Using (45) yields

ΔVi = 1

2
(ϕi+1 + ϕi )

T {m(ϕi+1 − ϕi ) + hZi } .

Therefore, ΔVi+1 can be written as

ΔVi+1 = 1

2
(ϕi+2 + ϕi+1)

T {m(ϕi+2 − ϕi+1) + hZi+1} .

Substituting for ϕi+2 from (21),

ΔVi+1 = 1

2
(ϕi+2 + ϕi+1)

T
{

− 2mϕi+1 + hZi+1

+ exp

(
−h

2
(Ω̂i+2 + Ω̂i+1)

×
)[

m(ϕi+1 + ϕi ) − h

2
Z ′
i − h

2
ηi+1

]}
.

Now, in order for ΔVi+1 to be negative definite, we require

exp

(
−h

2
(Ω̂i+2 + Ω̂i+1)

×
)[

m(ϕi+1 + ϕi ) − h

2
Z ′
i − h

2
ηi+1

]

− 2mϕi+1 + hZi+1 = −l(ϕi+2 + ϕi+1), (52)

where l > 0, l 	= m. ΔVi+1 simplifies to

ΔVi+1 = − l

2
(ϕi+2 + ϕi+1)

T (ϕi+2 + ϕi+1) . (53)
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Again substituting the value of ϕi+2 from (21) into (52), we have

exp

(
−h

2
(Ω̂i+2 + Ω̂i+1)

×
)[

m(ϕi+1 + ϕi ) − h

2
Z ′
i − h

2
ηi+1

]
− 2mϕi+1

+ hZi+1 = − l

m
exp

(
−h

2
(Ω̂i+2 + Ω̂i+1)

×
)[

m(ϕi+1 + ϕi ) − h

2
Z ′
i − h

2
ηi+1

]
.

Streamlining the terms in the above equation, we obtain

m + l

m
exp−

(
h

2
(Ω̂i+2 + Ω̂i+1)

×
)[

m(ϕi+1 + ϕi ) − h

2
Z ′
i − h

2
ηi+1

]

= 2mϕi+1 − hZi+1,

which upon further simplification yields

m(ϕi+1 + ϕi ) − h

2
Z ′
i − h

2
ηi+1

= m

m + l
exp

(
h

2
(Ω̂i+2 + Ω̂i+1)

×
) [

2mϕi+1 − hZi+1
]
.

Rearranging the terms above, we obtain the value of ηi as shown in (43). After sub-
stituting for ηi in (44), we get

ϕi+2 = 1

m + l

[
(m − l)ϕi+2 − hZi+1

]
. (54)

(54) can be rewritten in the previous time step as

ϕi+1 = 1

m + l
[(m − l)ϕi − hZi ] . (55)

We can rewrite ΔVi with the help of (53) to be,

ΔVi = − l

2
(ϕi+1 + ϕi )

T (ϕi+1 + ϕi ) . (56)

We employ the discrete-time La Salle invariance principle from LaSalle (1976)
considering our domain (SE(3) ×R

6) to be a subset of R12. We use Theorem 6.3 and
Theorem 7.9 from Chapter 1 of LaSalle (1976). For this, we first compute,

E = ΔV−1
i (0) = {(ḡi , ϕi ) ∈ SE(3) × R

6 | ϕi+1 + ϕi ≡ 0}. (57)

Now,

ϕi+1 + ϕi = 0 ⇒ ωi+1 + ωi = 0, vi+1 + vi = 0. (58)
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From (11), ωi+1 + ωi = 0 ⇒ Qi+1 = Qi . Therefore, we have ΔU = 0 whenever
ωi+1 + ωi = 0. This implies that the potential function, which is a Morse function,
is not changing and therefore has converged to one of its stationary points. At the
stationary points, we have that SΓi (R̂i ) = 0. Furthermore, I is the global minima of
the Morse function with an almost global domain of attraction.

From (13), we obtain that xi+1 = xi , and therefore, from (47) we also have that
yi+1 = yi . Note that we have ḡi+1 = ḡi when Qi+1 = Qi and xi+1 = xi . Further
substituting (58) into (44), we have

ϕi = hZi

2m
= hκ

m

[
R̂T
i

(
QT

i ( p̄ − bi )
)×

(yi )
R̂T
i+1(yi )

]
.

Similarly,

ϕi+1 = hκ

m

[
R̂T
i+1

(
QT

i ( p̄ − bi+1)
)×

(yi )
R̂T
i+2(yi )

]
,

and since ϕi+1 + ϕi = 0, we have (R̂i+1 + R̂i+2)
Tyi = 0 which can be rewritten

as (I + R̂i+1 R̂T
i+2)yi = 0. It is evident that (I + R̂i+1 R̂T

i+2) is non-singular, and
therefore, yi = 0. Note that yi = QT

i xi + (I − QT
i ) p̄. Therefore, when Qi = I , we

have yi = xi and subsequently xi = 0 with Qi = I gives us b̂i = bi . Therefore,
the largest invariant set for the estimation error dynamics will be M = {(ḡi , ϕi ) ∈
SE(3)×R

6 | ḡi = I , ϕi = 0}. Furthermore, we obtain the positive limit set as the set,

I := M ∩ V−1
i (0)

= {(ḡi , ϕi ) ∈ SE(3) × R
6 | ḡi = I , ϕi = 0}.

with an almost global domain of attraction.
This completes the proof of asymptotic stability of estimation error state (ḡi , ϕi ) =

(I , 0) with an almost global domain of attraction. ��

6 Simulation Results

In order to numerically verify this estimator, simulated true states of an aerial vehicle
are produced using a six-degree-of-freedom (6DOF) rigid body dynamics model. The
continuous-time 6DOF rigid body dynamics equations are as follows:

ḃ = Rν

mvν̇ = −mvΩ
×ν + φv

Ṙ = RΩ×

JvΩ̇ = −Ω× JvΩ + τv, (59)

where mv and Jv are the mass and moment of inertia of the rigid body, respec-
tively. φv and τv are the total force and torque in the body frame, respectively. A

123



86 Page 20 of 23 Journal of Nonlinear Science (2022) 32 :86

numerical method for the simulation of 6DOF rigid body dynamics is presented
in Baraff (1997). Several efficient algorithms to compute rigid body dynamics can
be found in Featherstone (2014). The vehicle mass and moment of inertia are
taken to be mv = 0.42 kg and Jv = diag(10−3 × [51.2 60.2 59.6]) kg·m2,
respectively. The resultant external forces and torques applied on the vehicle are
φv(t) = 10−3[10cos(0.1t) 2sin(0.2t) − 2sin(0.5t)]T N and τv(t) = 10−6φv(t) N·m,
respectively. The flight area is assumed to be a cubic space of size 20×20×20m with
the origin of the inertial frame located at the center of this cube. The initial attitude
and position of the vehicle are

R0 = expmSO(3)

((
π

4
×

[
3

7
− 6

7

2

7

]T)×)
,

and b0 = [2.5 0.5 − 3]T m.

The vehicle’s initial angular and translational velocities are

Ω0 = [0.2 − 0.05 0.1]Trad/s,
and ν0 = [−0.05 0.15 0.03]T m/s.

The vehicle dynamics is simulated over a time interval of T = 60 s, with a time
step size of h = 0.01 s. The trajectory of the vehicle over this time interval is depicted
in Fig. 2. The following two inertial directions, corresponding to Nadir and Earth’s
magnetic field direction are measured by the inertial sensors on the vehicle:

d1 = [0 0 − 1]T, d2 = [0.1 0.975 − 0.2]T.

For optical measurements, 8 beacons are placed at the corners of the room. It has been
assumed that at least two beacons are measured at each time instant. The observed
directions in the body-fixed frame are simulated with the help of the aforementioned
true states. The true quantities are disturbed by bounded, random noise with zeromean
to simulate realistic measurements. Based on coarse attitude sensors like sun sensors,
optical sensors and magnetometers, a random noise bounded in magnitude by 2.4◦
is added to the matrix L = RTD to generate measured Lm. Similarly, random noise
bounded in magnitude by 0.97◦/s and 0.025m/s, which are close to actual noise levels
of coarse rate gyros, are added toΩ , ν to generate measuredΩm and νm, respectively.
The scalar gain m = 1.5 and the dissipation term is chosen to be, l = 0.1. Furthermore,
the value of the gains kp and κ are chosen to be kp = 150 and κ = 100. The state
estimates are initialized at:

ĝ = I , Ω̂0 = [0.1 0.45 0.05]Trad/s,
and ν̂0 = [2.05 0.64 1.29]T m/s.

It is to be noted that the estimation scheme presented in Sect. 5 is a discrete-time
almost global asymptotically stable estimation scheme for simultaneous estimation
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Fig. 2 Trajectory of the body

of position, attitude, linear velocity and angular velocity. The filter equations in (44)
are implicit and therefore have to be solved simultaneously at each time instant in
order to obtain estimates for that time instant. We start with a set of random initial
state estimates as given above. With the help of the procedure mentioned in the pre-
vious paragraph, true values of inertial and optical directions, angular velocity and
linear velocity are disturbed with random noise to generate realistic measurements
and these measurements are fed into the filter equations at each time instant in real
time. The equations in (44) are simultaneously solved with the help of fsolve available
in MATLAB at each time instant to generate estimated values of state trajectories for
60s. The estimates are then compared with initially generated true state trajectories.
The position and attitude estimation error are shown in Fig. 3a and b, respectively.
We observe that both the position and the attitude errors converge to a bounded set
around the equilibrium after about 30s. The size of the bounded set is dictated by the
noise magnitudes. The corresponding velocity error plots are shown in Fig. 3c and
d, respectively, and show desired performance. It is important to note that we are not
required to assume the noise distribution properties.

7 Conclusions

An asymptotically stable and optimal discrete-time rigid body pose estimator has been
presented in this work. Suitable artificial potential energy and kinetic energy-like func-
tions of state estimation errors were used to construct a Lagrangian in discrete time.
The discrete Lagrange–d’Alembert principle was applied to this Lagrangian to obtain
an optimal filtering scheme. The dissipation terms were calculated through a discrete
Lyapunov analysis carried out on a Morse–Lyapunov function that corresponds to the
total energy function constructed from the kinetic and potential energy-like terms used
to construct the Lagrangian. The theoretical assertions are supported through realistic
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Fig. 3 Performance of the estimator

numerical simulations. It has been observed that the estimation errors converge to a
bounded neighborhood of the true states. The rates of convergence and domain of
convergence can be controlled by changing scalar gains associated with the poten-
tial and kinetic energy-like terms that make up the Lagrangian. Future work in this
domain would look into designing an explicit filtering scheme by constructing a suit-
able cost function, so that numerical computations are faster and simpler for onboard
implementation.
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