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time
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ABSTRACT
We consider tracking control of an underactuated system on the tangent bundle of the six-dimensional Lie
group of rigid bodymotions, SE(3). We formulate a finite-time stable (FTS) tracking control scheme for this
underactuated system in discrete time. This scheme is based on our recently developed theory for finite-
time stability for discrete-time systems using discrete Lyapunov analysis. The proposed scheme here is
developed in discrete time as it ismore convenient for onboard computer implementation and ensures sta-
bility irrespective of the samplingperiod. This schemeguarantees a stable convergenceof translational and
rotational tracking errors to the desired trajectory in finite time. Furthermore, the advantages of finite-time
stabilisation in discrete-time over finite-time stabilisation of a sampled continuous-time tracking control
system is addressed here through a numerical comparison. This comparison is performed using numeri-
cal simulations on continuous and discrete FTS tracking control schemes applied to an unmanned aerial
vehicle model.
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1. Introduction

Unmanned aerial vehicles (UAVs) are finding an increasing set
of application such as security, inspection of civilian infras-
tructure, agriculture and aquaculture, space and underwater
exploration, wildlife tracking, package delivery, and remote
sensing, all of which can benefit from reliable autonomous oper-
ations. Autonomous operations including autonomous trajec-
tory tracking for unmanned vehicles is a challenging problem
that has attracted the attention of many researchers, especially
in applications where it is difficult or impossible to do remote
piloting. The key objective of reliable operations of UAVs is
stable and robust guidance and control, particularly for oper-
ations that need safety and reliability in the presence of external
disturbances.

The literature on tracking control of UAVs includes many
linear control methods that fail to work for large manoeuvers
due to the nonlinearities in the dynamics. A variety of non-
linear controllers using such methods as sliding-mode, back-
stepping, dynamic inversion (Wang et al., 2013), and feedback-
linearisation (D. Lee et al., 2009), have also been proposed as
solutions to this problem. An important issue in control of rigid
body systems is the characterisation of the configuration space,
and thereby the state space. The configuration space for a rigid
body is not a linear (vector) space. Commonly used attitude
representations for rigid body rotational dynamics and control
are Euler angles on R

3 and unit quaternions on S
3 (the unit

hypersphere embedded in R
4). Euler angles are not unique at

certain orientations where the angles rates become unbounded,
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a phenomenon called ‘gimbal lock’. Unit quaternions can rep-
resent all attitudes, but are ambiguous: an antipodal pair of
unit quaternions represent a single attitude. This leads to a type
of instability called ‘unwinding’ in continuous state feedback
(Bhat & Bernstein, 2000; Chaturvedi et al., 2011). To avoid the
aforementioned drawbacks, geometric control methods have
been used for control of UAVs. An early work using geometric
control on Lie groups to treat the trajectory tracking problem
for a fully-actuated system on SE(3) was presented in Bullo
andMurray (1999), which generalised the classical proportional
derivative (PD) control in a coordinate-free way. Geometric
tracking controllers based on the special Euclidean group SE(3)
that avoid singularities and instabilities of other control laws,
were reported in Shi et al. (2015), T. Lee et al. (2010, 2012),
Mellinger and Kumar (2011), Kushleyev et al. (2013), Rudin
et al. (2011), Fernando et al. (2011), H. Lee et al. (2013),
Goodarzi et al. (2015), and Invernizzi and Lovera (2017). It
is worth mentioning that all these controllers are obtained in
continuous time.

This work presents a systematic treatment of discrete-time
stable geometric control for tracking position and attitude tra-
jectories of unmanned vehicles that have four independent con-
trol inputs for the six degrees of freedom of translational and
rotational motion in three dimensional Euclidean space. The
control inputs actuate the three degrees of rotational motion
and one degree of translational motion in a vehicle body-
fixed coordinate frame. This actuation model covers a wide
range of unmanned vehicles like fixed-wing and rotorcraft
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unmanned aerial vehicles, underwater vehicles, and spacecraft.
The advantages of the tracking control laws proposed here are
two-fold: they are finite-time stable, and they are obtained in
discrete-time, which makes it easy for onboard computation
implementation.

Finite-time stability: Finite-time stable control has the advan-
tage of providing guaranteed convergence to a desired state
(or trajectory) in finite time, as well as being more robust to
bounded temporary and persistent disturbances than asymp-
totic stability. Furthermore, low-level persistent disturbances
are better rejected by a finite-time stable system in compari-
son to an asymptotically stable system, because the ultimate
bound on the state is of higher order than the bound on the
disturbance (Sanyal & Bohn, 2015). A finite-time stable control
scheme for simple mechanical systems in generalised coordi-
nates is designed and presented in Sanyal and Bohn (2015).
In Sanyal et al. (2013), continuous finite-time stable control
(FTS) schemes are shown to be effective, especially when there
are bounded disturbance inputs. Continuous FTS control sys-
tems have been analysed in Shi et al. (2015), Bhat and Bern-
stein (1998, 2000), Dorato (2006), Haddad et al. (2008), Yan
et al. (2015), and Harshavarthini et al. (2019). An almost global
finite-time stabilisation of rigid body attitude motion to the
desired attitude is studied in Sanyal et al. (2013) and Bohn
and Sanyal (2015). Continuous-time FTS integrated guidance
and feedback tracking control schemes for pose tracking of
rigid bodies were reported in Prabhakaran et al. (2018), Prab-
hakaran, Sanyal, and Izadi (2017), and Prabhakaran, Sanyal,
and Warier (2017), which ensure finite-time stability of the
overall feedback system. In these papers, the continuous
equations of motion were discretised in the form of a Lie
Group Variational Integrator (LGVI) by applying the discrete
Lagrange–d’Alembert principle, and the continuous-time con-
trol scheme was sampled at a constant trajectory for computer
implementation. Prior related research on LGVI discretisation
of rigid body dynamics includes (Hussein et al., 2006; Izadi
& Sanyal, 2014, 2016; T. Lee et al., 2005; Marsden &West, 2001;
Nordkvist & Sanyal, 2010; Sanyal et al., 2011).

Discrete-time stability: Implementing a sampled continuous-
time stable tracking control scheme does not ensure discrete-
time stability of the resulting feedback system. This was
indicated for the case of nonlinear observer design for atti-
tude dynamics, in Izadi and Sanyal (2014, 2016), and Izadi
et al. (2015). A discrete-time stable feedback tracking con-
trol scheme was developed in Hamrah et al. (2018), in which
discrete-time control laws obtained guaranteed asymptotic
discrete-time stability of pose tracking control of underactu-
ated vehicles on SE(3). Note that, like the continuous-time
FTS control schemes in above-cited work, the discrete-time
FTS control scheme proposed here guarantees finite-time sta-
ble convergence to the desired equilibrium or trajectory, but it
does so in discrete time. In addition, discrete-time FTS con-
trol scheme enables onboard computer implementation with a
variety of discrete-time input data frequencies. A finite-time sta-
ble position tracking controller and an attitude tracking control
scheme are presented in Hamrah et al. (2019, 2020), respec-
tively. This paper integrates these two FTS tracking controllers
to form a finite-time stable pose tracking control scheme in
SE(3) in discrete-time, which is the first of its kind. A finite-time

stabilisation scheme in discrete-time is formulated here for pose
tracking in SE(3), using discrete-time Lyapunov analysis which
leads to the discrete-time control law. This discrete-time con-
trol law ensures position and attitude trajectory tracking errors
converge to zero in a finite-time interval. The stability and
performance of the proposed discrete FTS scheme control are
numerically compared with those of a continuous FTS scheme,
and the results are discussed.

The remainder of this paper is organised as follows. Section 2
outlines the general formulation of the problem for a rigid
body on SE(3), as well as providing the tracking error kine-
matics and dynamics of the vehicle and their discretisations.
Section 3 presents a basic result on finite-time stability and
convergence for discrete-time systems. Sections 4 and 5 deals
with the discrete-time Lyapunov framework and a two-step sys-
tematic method to obtain discrete-time position and attitude
tracking control laws for FTS pose tracking control in SE(3),
respectively. A continuous FTS tracking scheme is provided in
Section 7, which is the scheme first proposed in Prabhakaran
et al. (2018). Numerical simulation results based on a Lie group
variational integration scheme and the finite-time control laws
obtained in discrete time are presented in Section 8. This section
also presents a comparison of the stability properties of the
discrete-time and continuous-time FTS schemes. The conclud-
ing Section 9 gives a summary of the presented results and
mentions related research directions to be pursued in the near
future.

2. Problem formulation

2.1 Coordinate frame definition

The configuration of an unmanned vehicle modelled as a rigid
body is given by its position and orientation, which are together
referred to as its pose. To define the pose of the vehicle, we fix a
coordinate frame B to its body and another coordinate frame I
that is fixed in space and takes the role of an inertial coordinate
frame. Let b ∈ R

3 denote the position vector of the origin of
frameB with respect to frame I represented in frame I . Let R ∈
SO(3) denote the orientation (attitude), defined as the rotation
matrix from frame B to frame I . The pose of the vehicle can be
represented in matrix form as follows:

g =
[
R b
0 1

]
∈ SE(3), (1)

where SE(3) is the six-dimensional Lie group of rigid body
motions (translational and rotational) that is obtained as the
semi-direct product of R

3 with SO(3) (Varadarajan, 1984). A
conceptual diagram of guidance on SE(3) through a set of
waypoints is given in Figure 1.

2.2 Trajectory generation for underactuated vehicle

The trajectory generation problemconsists of creating an appro-
priately smooth position trajectory that is continuous and twice
differentiable. Such a time trajectory for the position through
given waypoints could be generated using one of several tech-
niques (T. Lee et al., 2010; Mellinger et al., 2012). Once the
desired position trajectory over time has been generated for
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Figure 1. Guidance through a set of finite waypoints between initial and final
configurations on SE(3).

the underactuated vehicle with body-fixed thrust direction, a
desired attitude trajectory Rd(t) is generated such that the posi-
tion trajectory is tracked.

Let gd(t) ∈ SE(3) be the desired pose (position and atti-
tude) generated by the guidance scheme (Prabhakaran, Sanyal,
& Izadi, 2017; Prabhakaran et al., 2018). Then the desired veloci-
ties (translational and rotational) are given by ξd(t) that satisfies
the kinematics

ġd(t) = gd(t)ξd(t)∨, with

(ξd)∨ =
[
(�d)× νd

0 0

]
∈ se(3) ⊂ R

4×4 for

ξd =
[
�d

νd

]
∈ R

6. (2)

Here, νd,�d are the body’s desired translational and angular
velocities, respectively, and (·)× : R

3 → so(3) ⊂ R
3×3 is the

skew-symmetric cross-product operator giving the vector space
isomorphism between R

3 and so(3):

x× =
⎡
⎣x1x2
x3

⎤
⎦

×

=
⎡
⎣ 0 −x3 x2

x3 0 −x1
−x2 x1 0

⎤
⎦ . (3)

2.3 Tracking error kinematics and dynamics in continuous
time

Define pose and desired pose of the vehicle on SE(3) as follows:

g =
[
R b
0 1

]
, gd =

[
Rd bd
0 1

]
. (4)

Tracking error on SE(3) is given by

h = (gd)−1g =
[
Q x
0 1

]
, (5)

where

Q = (Rd)TR (6)

is the attitude tracking error, and x = (Rd)T(b − bd) = (Rd)Tb̃
is the position tracking error, both in the desired body fixed
frame. Therefore, the kinematics for the pose tracking error is

ḣ = hξ̄∨, (7)

where

ξ̄∨ =
[
ω× υ

0 0

]
(8)

and

ω = �− QT�d (9)

is the angular velocity tracking error, and υ = ν − QT(νd +
(�d)×x) is the translational velocity tracking error expressed
in the body frame. The tracking errors for translational motion
are expressed with respect to inertial frame as b̃ := b − bd and
ṽ := v − vd, which are position and velocity tracking errors,
respectively.

Therefore, in inertial frame I , the translational error dynam-
ics are expressed as

˙̃b = ṽ = v − vd, (10)

m ˙̃v = mg e3 − (ϕ + ϕD)− vd, (11)

wherem is themass of rigid body, g is the gravity,ϕ is the control
force vector, and ϕD is the disturbance force vector acting on the
body, expressed in inertial frame. The magnitude of this vector
is the control input f, which is designed as a feedback control
law, and e3 = [0 0 1]T is the third standard basis of R

3. The
position trajectory control law gives a desired thrust direction,
which is then used to generate a desired attitude trajectory, as
described in Prabhakaran et al. (2018). Let J denote inertia of a
rigid body. The rotational dynamics of the rigid body is given
by

Ṙ = R�×, (12)

J�̇ = J�×�+ τ + τD. (13)

where τ is the input torque, and τD is an unknown bounded
disturbance torque. Therefore, the dynamics for the attitude
tracking error is

Jω̇ = τ + J(ω×QT�d − QT�̇d)− (ω+QT�d)×J(ω+QT�d).
(14)

Since the translational error dynamics is expressed in the iner-
tial frame, the rotational error dynamics is decoupled from the
translational error dynamics such that the translation control
force, f, is obtained in the inertial frame followed by the appro-
priate attitude control, τ , in body frame to track the desired
trajectory, bd.
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2.4 Tracking error kinematics and dynamics in discrete
time

Consider tracking a desired pose gd(t) in a time inter-
val [t0, tf ] ∈ R

+ separated into N equal-length sub-intervals
[tk, tk+1] for k = 0, 1, . . . ,N, with tN = tf and tk+1 − tk = 	t
where 	t is the time step size. Therefore, one can express the
discrete-time pose error kinematics and dynamics of an under-
actuated vehicle in the form of LGVI presented in Nordkvist
and Sanyal (2010) and Hamrah et al. (2018) as⎧⎪⎪⎪⎨
⎪⎪⎪⎩
b̃k+1 − b̃k = ṽk	t,
mṽk+1 = mvk +	t m g e3 − (ϕ̄k + ϕ̄Dk )− mvdk+1,
Rk+1 = Rk Fk,
J�k+1 = FTk J�k + uk + uDk ,

(15)

where vk+1 = ṽk+1 + vdk+1, ϕ̄k = 	tϕk is the force control
input, ϕ̄Dk is the disturbance force, uk = 	tτk is the torque con-
trol input, uDk is the disturbance moment in addition to the
control torque uk, and Fk ≈ exp(	t�×

k ) ∈ SO(3) guarantees
that Rk evolves on SO(3). Using the discretised rotational kine-
matics equation given in (15) and attitude racking error of (6)
in discrete form, one can write

Qk+1 = (Rdk+1)
TRk+1 = (Rdk+1)

TRk Fk, (16)

where Rdk+1 = Rdk F
d
k . Then,

Qk+1 = (Fdk )
T(Rdk)

TRk Fk

= (Fdk )
TQk Fk. (17)

Using the definitions for Fk and Fdk given earlier into the above
expression and carrying out some algebraic simplifications, one
obtains

Qk+1 ≈ Qk
[
I +	t(�k − QT

k�
d
k)

×]
= Qk(I +
k

×), (18)

where
k = 	t ωk, andωk is the angular velocity tracking error
at time instant tk.

3. Finite-time stability of discrete-time systems

The following result is a basic result on finite-time stability and
convergence for discrete-time systems, and it was first reported
in Sanyal (2019) and Hamrah et al. (2019).

Lemma 3.1: Consider a discrete-time system with inputs uk ∈
R
m and outputs yk ∈ R

l. Define a corresponding positive definite
(Lyapunov) function V : R

l → R and let Vk = V(yk). Let α be a
constant as 0 < α < 1, η ∈ R

+ a constant, and let γk := γ (Vk)
where γ : R

+
0 → R

+
0 is a positive definite function of Vk. Let γk

satisfy the condition:

γk ≥ η for all Vk ≥ ε, (19)

for some (possibly small) constant ε ∈ R
+. Then, if Vk satisfies

the relation

Vk+1 − Vk ≤ −γkVαk , (20)

the discrete system is (Lyapunov) stable at y = 0 and yk converges
to y = 0 for k>N, where N ∈ S is finite.

Proof: The proof of this lemma is given in Hamrah et al. (2019)
and Sanyal (2019), and omitted here for brevity. �

The following statement presents the conditions under
which a discrete-time system is finite-time stable using a Lya-
punov function that is quadratic in terms of states.

Lemma 3.2: Consider the discrete-time system

xk+1 = B(xk)xk, (21)

where xk ∈ R
n and B : R

n → R is a Co function. Define Vk :=
V(xk) as follows:

Vk := V(xk) = xTk Pxk, P = PT > 0. (22)

and denote Bk := B(xk). The system (21) is finite-time stable
under following conditions:⎧⎪⎨

⎪⎩
B2

k ≤ 1 − γk

V1−α
k

,

Vk ≥ ε = η
1

1−α ,
(23)

where Vk, γk, and η are as defined in Lemma 3.1.

Proof: Evaluating the first finite difference of Vk, one obtains

V(1)k := Vk+1 − Vk = (xk+1 − xk)TP(xk + xk+1)

= xTk (Bk + 1)P(Bk − 1)xk

= (B2
k − 1)xTk Pxk

= (B2
k − 1)Vk. (24)

According to Lemma 3.1, finite-time stability of system (21)
requires that

Vk+1 − Vk ≤ −γkVαk for 0 < α < 1,

where γk is defined as in Lemma 3.1 and satisfies the condi-
tion (19). From (20) and (24), we have

Vk+1 − Vk ≤ −γkVαk ⇔ (B2
k − 1)Vk ≤ −γkVαk

⇔ B2
k ≤ 1 − γk

V1−α
k

. (25)

Noting that B2 ≥ 0, we conclude from (25) that

V1−α
k ≥ γk = γ (Vk). (26)

It is also clear from above that if inequality (26) is reversed, i.e.
if γk ≥ V1−α

k for finite k, then that would lead to a contradic-
tion of (25) wherebyB2

k ≤ 0, which can only happen ifBk = 0.
This, in turn, would result in finite-time stability of system (21)
as xk+1 = Bkxk = 0. This leads us to the conclusion that if γk
satisfies condition (19) in Lemma 3.1, then system (21) will be
finite-time stable. �

Note that inequality (25) can be used to design Bk if,
for example, it is evaluated as an equality with a γk = γ (Vk)
designed to meet the above requirement. In fact, γ (·) can be
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positive definite function (not-necessary class-K) that meets
this requirement, i.e. γk ≥ η for all Vk ≥ η

1
1−α , η > 0. Follow-

ing lemma presents a design for γ which satisfies the conditions
given in (23).

Lemma 3.3: Consider the conditions (23), under which the sys-
tem (21) is shown that is finite-time stable. One possible design for
γk and Bk as a function of Vk can be as

γk = 4c

(
V1−α
k

V1−α
k + c

)2

(27)

and

Bk = V1−α
k − c

V1−α
k + c

, (28)

where c ≥ 0 is a constant, and γk and Bk satisfy both conditions
in (23).

Proof: Consider

γk = f (Vk).

(
V1−α
k

V1−α
k + c

)2

, (29)

where f (Vk) is a positive and bounded function. Then, to satisfy
the condition (26), it is required to have

V1−α
k ≥ f (Vk).

(
V1−α
k

V1−α
k + c

)2

. (30)

One can find f (Vk) such that above inequality as well as (25)
hold for the designed γk, and then the best expression for Bk
will be determined accordingly.

Substituting (29) into (25), one finds

B2
k ≤ 1 − f (Vk).

V1−α
k

(V1−α
k + c)2

≤ (V1−α
k + c)2 − f (Vk).V1−α

k

(V1−α
k + c)2

≤ (V1−α
k )2 + 2c V1−α

k − f (Vk).V1−α
k + c2

(V1−α
k + c)2

. (31)

As noted in Lemma 3.2, B2 ≥ 0 leads to V1−α
k ≥ γk, and satis-

fies the condition (29). Therefore, for B2 ≥ 0, it is required to
have

(
f (Vk)− 2c

)
V1−α
k ≤ (V1−α

k )2 + c2. (32)

One solution to the above inequality is
(
f (Vk)− 2c

)
V1−α
k = ±2c V1−α

k , (33)

which gives f (Vk) = 0, 4c. Since γk is a positive definite func-
tion by definition, f (Vk) = 4c would be the acceptable answer.

Therefore, one obtains expressions for γk and Bk as⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

γk = 4c

(
V1−α
k

V1−α
k + c

)2

,

Bk = V1−α
k − c

V1−α
k + c

,

(34)

which satisfy the conditions given in (23) and guarantee the
stability of the system (21). �

4. Discrete-time stable position tracking control

Defining the discrete-time Lyapunov function quadratic in
position tracking error as

V(b̃k) = Vk = 1
2
b̃Tk Pb̃k, (35)

where P = PT ∈ R
3×3 is a positive definite control gain matrix.

The total time difference of this discrete Lyapunov function in
the time interval [tk, tk+1] for k = 0, 1, . . . ,N is then obtained
as

	Vk = Vk+1 − Vk = 1
2
b̃Tk+1Pb̃k+1 − 1

2
b̃Tk Pb̃k

= 1
2
(b̃k+1 − b̃k)TP(b̃k + b̃k+1). (36)

A constructive method to obtain FTS position tracking control
scheme in discrete time is provided here, which has two steps. In
the first step, we develop a discrete vector-valued function of the
position and velocity tracking errors that ensures that when this
function converges to zero, the errors converge to zero as well.
The following statement presents the first step of this method.

Lemma 4.1: Define l(b̃k, ṽk) as

l(b̃k, ṽk) := ṽk	t + β(b̃k+1 + b̃k)
(b̃Tk Pb̃k)

1−1/p
, (37)

for the dynamics given in (15), where β > 0, 1< p< 2 and ṽk =
(b̃k+1 − b̃k)/	t. Let

b̃k+1 = B(b̃k)b̃k, where

B(b̃k) :=
(b̃Tk Pb̃k)

1−1/p − β

(b̃Tk Pb̃k)
1−1/p + β

.
(38)

Then the tracking errors (b̃k, ṽk) converge to zero in finite time
when l(b̃k, ṽk) = 0.

Proof: One can rewrite (38) as

b̃k+1 = b̃k
(b̃Tk Pb̃k)

1−1/p − β

(b̃Tk Pb̃k)
1−1/p + β

. (39)

Hence, it can be simplified to

b̃k+1 − b̃k = −β(b̃k+1 + b̃k)
(b̃Tk Pb̃k)

1−1/p
. (40)
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Note that this can be re-expressed as

−β(b̃k+1 + b̃k)
(b̃Tk Pb̃k)

1−1/p
= ṽk	t, (41)

which holds when l(b̃k, ṽk) = 0.
Consider the discrete-time Lyapunov function Vk defined

by (35). The difference between the values of this function at
successive discrete instants is given by (36). From (40), substi-
tuting b̃k+1 − b̃k into (36), one gets

Vk+1 − Vk = −β
2
(b̃k+1 + b̃k)TP(b̃k+1 + b̃k)

(b̃Tk Pb̃k)
1−1/p

. (42)

Note that b̃k+1 + b̃k = (1 + B(b̃k))b̃k, and the right side of
expression (42) is zero if only if

b̃k+1 = −b̃k,

which is possible if and only if B(b̃k) = −1 according to (38).
From the expression forB(b̃k) in (38), one can see thatB(b̃k) =
−1 if and only if b̃k = 0. Therefore, we conclude that

Vk+1 − Vk = 0 ⇔ b̃k = 0.

Now substituting (39) into (42) and noting that b̃Tk Pb̃k = 2Vk,
one obtains

Vk+1 − Vk = −γk(Vk)
1/p, (43)

where

γk = 4β
21−1/p(Vk)

2−2/p(
(2Vk)1−1/p + β

)2 . (44)

Clearly, γk as given by Equation (44) is a class-K function
of Vk. From Equations (43) and (44), one can see that Vk is
monotonously decreasing if γk > 0 and

0 < γk <
4β

21−1/p for 0 < 2Vk < ∞.

Therefore, γk would lead to finite-time stability of the tracking
control system. Also from (44), one obtains the ratio:

ak := γk

γ0
= (Vk)

2−2/p

(V0)2−2/p

(
(2V0)

1−1/p + β
)2(

(2Vk)1−1/p + β
)2 . (45)

This ratio in Equation (45) is bounded below by a positive num-
ber in the open interval (0, 1) for non-zero Vk and V0. This
guarantees the existence of ε ∈ (0, 1) and 0 < χ < (V0)

1−1/p

that satisfy the condition (19) in the statement of Lemma 3.1
for Vk. Therefore, (43) guarantees that Vk converges to zero for
k>N for some finite N ∈ N, and this ensures the finite-time
stable convergence of tracking errors to zero. �

In the second step of finding the FTS position tracking
scheme in discrete time, one can create a control force for the
error dynamics given in (15) that ensures convergence of the
function l(b̃k, ṽk) derived in the first step to zero in finite time.

This will, in turn, ensure that (b̃k, ṽk) converges to (0, 0) in finite
time. In order to fulfill this objective, a positive definite Lya-
punov function in terms of the obtained vector-valued l(b̃k, ṽk)
is constructed as

V (b̃k, ṽk) = 1
2
l(b̃k, ṽk)Tl(b̃k, ṽk), (46)

which can be used to obtain the FTS tracking control scheme in
discrete time. The following statement provides the main result
on a finite-time stable position tracking control scheme.

Theorem 4.2: Consider the translational kinematics and
dynamics given by (15). Then, the discrete-time force control law
given by

ϕ̄k = m
(
vk +	t g e3 − ṽdk+1

)
− m
	t

[(
1+ κ

(lTk lk)
1−1/p

)(
1+ β

(b̃Tk+1Pb̃k+1)1−1/p

)]−1

·
{(

1 − κ

(lTk lk)
1−1/p

)
ṽk	t

− 2β
(b̃Tk+1Pb̃k+1)1−1/p

(
1 + κ

(lTk lk)
1−1/p

)
b̃k+1

+ β(b̃k+1 + b̃k)
(b̃Tk Pb̃k)

1−1/p

(
1 − κ

(lTk lk)
1−1/p

)}
, (47)

where κ > 0, and p and β are as defined in Lemma 4.1, stabilises
the translational error dynamics in finite time.

Proof: Consider the Lyapunov function (46) quadratic in
l(b̃k, ṽk) as constructed in (37). Therefore, the time difference
of this discrete-time Lyapunov function can be evaluated as
follows:

Vk+1 − Vk = 1
2
(lk+1 + lk)T(lk+1 − lk). (48)

Similar to the definition for b̃k+1 in Lemma 4.1, one can con-
sider

lk+1 = L(b̃k, ṽk)lk, (49)

where

L(b̃k, ṽk) = (lTk lk)
1−1/p − κ

(lTk lk)
1−1/p + κ

. (50)

Substituting (50) in (49) gives

(lk+1 − lk) = − κ

(lTk lk)
1−1/p (lk+1 + lk). (51)

Then according to Lemma 4.1, one can prove similarly that

Vk+1 − Vk = −λkV 1/p
k , (52)
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where

λk = 4κ
21−1/p(Vk)

2−2/p(
(2Vk)1−1/p + κ

)2 (53)

is a class-K function of Vk. Also, from (52) and (53), one can see
that

0 < λk <
4κ

21−1/p for 0 < 2Vk < ∞.

Therefore, λk would lead to finite-time stability of tracking
control system.

Now, by substituting l(b̃k, ṽk) given in (37) into (51), one can
obtain

(ṽk+1 − ṽk)	t + β

[
(b̃k+2 + b̃k+1)

(b̃Tk+1Pb̃k+1)1−1/p
− (b̃k+1 + b̃k)
(b̃Tk Pb̃k)

1−1/p

]

= − κ

(lTk lk)
1−1/p

{
(ṽk+1 + ṽk)	t

+ β

[
(b̃k+2 + b̃k+1)

(b̃Tk+1Pb̃k+1)1−1/p
+ (b̃k+1 + b̃k)
(b̃Tk Pb̃k)

1−1/p

]}
. (54)

Noting that (b̃k+2 − b̃k+1)/	t = ṽk+1, one can solve above
expression for ṽk+1 to obtain the discrete-time translational
error dynamics equation as

ṽk+1 = F(b̃k, b̃k+1, ṽk, lk)

= 1
	t

[(
1 + κ

(lTk lk)
1−1/p

)(
1 + β

(b̃Tk+1Pb̃k+1)1−1/p

)]−1

·
{(

1 − κ

(lTk lk)
1−1/p

)
ṽk	t

− 2β
(b̃Tk+1Pb̃k+1)1−1/p

(
1 + κ

(lTk lk)
1−1/p

)
b̃k+1

+ β(b̃k+1 + b̃k)
(b̃Tk Pb̃k)

1−1/p

(
1 − κ

(lTk lk)
1−1/p

)}
, (55)

Then, noting that ṽk+1 = vk+1 − vdk+1, one can obtain the
discrete-time control force vector given by (47) after substitut-
ing (55) in the second equation of (15). The discrete-time con-
trol force vector so obtained, guarantees the finite-time stability
of the position tracking control. �

The following section provides a finite-time stable feed-
back control law in discrete-time to stabilise the attitude error
dynamics (15).

5. Discrete finite-time stable attitude tracking control

In this section, a finite-time stable attitude tracking control
scheme in discrete time is provided. The following two lemmas
are also used to prove the main result.

Lemma 5.1: Let x and y be non-negative real numbers and let p
as defined in 4.1. Then

x(1/p) + y(1/p) ≥ (x + y)(1/p). (56)

Moreover, the above inequality is a strict inequality if both x and
y are non-zero.

Lemma 5.2: Let K = diag(k1, k2, k3), where k1 > k2 > k3 ≥ 1.
Define

sK(Q) =
3∑

i=1
ki(QTei)× ei, (57)

such that d
dt 〈K, I − Q〉 = ωTsK(Q). Here, 〈A,B〉 = tr(ATB),

which makes 〈K, I − Q〉 a Morse function defined on SO(3).
Let S ⊂ SO(3) be a closed subset containing the identity in its
interior, defined by

S = {
Q ∈ SO(3) : Qii

≥ 0 and QijQji ≤ 0 ∀ i, j ∈ {1, 2, 3}, i �= j
}
. (58)

Then for Q ∈ S , we have

sK(Q)TsK(Q) ≥ tr(K − KQ). (59)

Proof: The proof of this lemma is given in Bohn and
Sanyal (2015), and omitted here for brevity. �

The discrete finite-time attitude tracking control scheme and
its proof of stability and domain of convergence are given as
follows.

Theorem 5.3: Consider the discretised rotational error kine-
matics and the real dynamics of an underactuated vehicle given
in (15), with sK(Qk) as defined in (57). Define

zK(Qk) = sK(Qk)(
sTK(Qk)sK(Qk)

)1−1/p , (60)

where p is as defined in Lemma 5.1, and let kl be a constant in the
interval (0, 1]. Then, the discrete-time control law given by

uk = J
([

(ψT
k Jψk)

1−1/p − �

(ψT
k Jψk)1−1/p + �

] (
ωk + klzK(Qk)

)

− klzK(Qk+1)+ QT
k+1�

d
k+1

)
− FTk J�k, (61)

stabilises the rotational error dynamics

ωk+1 =
[
(ψT

k Jψk)
1−1/p − �

(ψT
k Jψk)1−1/p + �

]
ψk(ωk,Qk)− klzK(Qk+1)

(62)

in finite time, where ψk(ωk,Qk) is defined as

ψk(ωk,Qk) = ωk + klzK(Qk). (63)
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Proof: Consider ωk = −klzK(Qk) and discretised error kine-
matics given in (15) and define the discrete-time Morse func-
tion Uk = kp〈I − Qk,K〉 on SO(3) where kp > 1. Then the first
time difference of this discrete-time Morse function along the
attitude kinematics is given by

Uk+1 − Uk = kp
〈
Qk − Qk+1,K

〉
= kp〈−Qk


×
k ,K〉

= kp〈
×
k ,−QT

k K〉

= 1
2
kp〈
×

k ,KQk − QT
k K〉

= kp
T
k SK(Qk). (64)

Substituting
k = 	t ωk in (64), one finds

kp
T
k SK(Qk) = −	t kp kl zK(Qk)

TsK(Qk)

= −kp kl	t
(
sK(Qk)

TsK(Qk)
)1/p

≤ −kp kl	t
( 〈I − Qk,K〉 )1/p

≤ −kl	t
(
kp 〈I − Qk,K〉 )1/p, (65)

where we employed inequality (59) in Lemma 5.2. Therefore,
when ψk = 0, one can conclude that 〈I − Qk,K〉 → 0 in finite
time for all initial Qk in the subset S ⊂ SO(3) defined in
Lemma 5.1, which yields Qk → I in finite time once Qk ∈ S .
Moreover, as	Uk = Uk+1 − Uk is negative definite whenψk =
0, it keeps decreasing in time and therefore Qk will reach S in
finite time. Therefore, Qk → I in finite time.

The control law is then designed to ensure that ψk(ωk,Qk)
→ 0 in finite time. Define the Morse–Lyapunov function

Vk(ωk,Qk) = 1
2
ψk(ωk,Qk)

Tψk(ωk,Qk)+ kp 〈I − Qk,K〉 .
(66)

The time difference of this discrete-timeMorse–Lyapunov func-
tion can be evaluated as follows:

Vk+1 − Vk = 1
2
ψT
k+1Jψk+1 − 1

2
ψT
k Jψk + kp

〈
Qk − Qk+1,K

〉
= 1

2
(ψk+1 + ψk)

TJ(ψk+1 − ψk)

+ kp
〈
Qk − Qk+1,K

〉
. (67)

One can consider

ψk+1 = �(ωk,Qk)ψk, (68)

where

�(ωk,Qk) = (ψT
k Jψk)

1−1/p − �

(ψT
k Jψk)1−1/p + �

, (69)

and let � > 0.

Substituting (69) in (68) gives

(ψk+1 − ψk) = − �

(ψT
k Jψk)1−1/p (ψk+1 + ψk). (70)

Therefore, one can rewrite (67) as

Vk+1 − Vk = −�
2
(ψk+1 + ψk)

TJ(ψk+1 + ψk)

(ψT
k Jψk)1−1/p

+ kp
T
k SK(Qk). (71)

Note that the first term on the right-hand side of expression (71)
is zero if and only if

ψk+1 = −ψk,

which is possible if and only if �(ωk,Qk) = −1 according
to (68). From (69), one can see that�(ωk,Qk) = −1 if and only
if ψk = 0. Therefore, from (68) and (69) we conclude that

−�
2
(ψk+1 + ψk)

TJ(ψk+1 + ψk)

(ψT
k Jψk)1−1/p = 0 ⇔ ψk = 0.

Therefore, the first term on the right-hand side of expres-
sion (71) can be simplified as follows:

−�
2
(ψk+1 + ψk)

TJ(ψk+1 + ψk)

(ψT
k Jψk)1−1/p = −ρk(ψT

k Jψk)
1/p, (72)

where

ρk = 4�
(0.5)1−1/p(ψT

k Jψk)
2−2/p(

(ψT
k Jψk)1−1/p + �

)2 . (73)

From Equations (72) and (73), one can see that the first term
on the right-hand side of expression (71) is monotonously
decreasing if

0 < ρk <
4�

21−1/p for 0 < ψT
k Jψk < ∞.

Therefore, using (65) and (72), the expression (71) is evaluated
as follows:

	Vk = −ρk(ψT
k Jψk)

1/p − kpkl	t
(
sK(Qk)

TsK(Qk)
)1/p

≤ −(ψT
k Jψk)

1/p − kl	t
(
kp 〈I − Qk,K〉 )1/p

≤ −kl	t
(
(ψT

k Jψk)
1/p + (

kp 〈I − Qk,K〉 )1/p). (74)

for (Qk,ωk) ∈ S × R
3. Finally, using inequality (56) in

Lemma 5.1, one obtains

	Vk ≤ −kl	t
(
ψT
k Jψk + kp 〈I − Qk,K〉

)1/p
≤ −kl	t V1/p

k , (75)

where kp > 0, and 0 < kl ≤ 1. Therefore, all initial states of the
feedback attitude system,which start in the domain of attraction
of the equilibrium (I, 0) and for which the value of the Lyapunov
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function V is finite, converge to (I, 0) in finite time. Now, by
substituting ψk(ωk,Qk) given in (63) into (68), one can obtain

ωk+1 = �(ωk,Qk)
(
ωk + klzK(Qk)

)− klzK(Qk+1) (76)

or

ωk+1 =
[
(ψT

k Jψk)
1−1/p − �

(ψT
k Jψk)1−1/p + �

]
ψk(ωk,Qk)− klzK(Qk+1).

(77)

From the discretised dynamics equation of rotational motion
obtained in the form of a LGVI given in (15) as

J�k+1 = FTk J�k + uk, (78)

where

�k+1 = ωk+1 + QT
k+1�

d
k+1, (79)

one can find the discrete-time control law uk that guarantees
the stability of the attitude tracking control in a finite time, as
follows:

uk = J

([
(ψT

k Jψk)
1−1/p − �

(ψT
k Jψk)1−1/p + �

] (
ωk + klzK(Qk)

)

− klzK(Qk+1)+ QT
k+1�

d
k+1

)
− FTk J�k. (80)

�

Remark 5.1: (Almost global domain of attraction of the con-
trol scheme): Analysing the time difference of the Morse–
Lyapunov function (66) showed that this function satisfies the
sufficient condition for finite-time stability. From prior research
on almost global asymptotic attitude stabilisation and track-
ing in Chaturvedi et al. (2011), Sanyal et al. (2011), and Sanyal
and Chaturvedi (2008), we know that the subset of SO(3)where
sK(Qk) = 0, which is also the set of critical points for 〈I −
Qk,K〉, is
C � {I, diag(1,−1,−1), diag(−1, 1,−1), diag(−1,−1, 1)}
⊂ SO(3).

Therefore, the subset of the state space where Vk+1 − Vk =
0 is {(Qk,ωk) : Qk ∈ C and ωk = 0} ⊂ SO(3)× R

3 � TSO(3).
This subset is also the set of equilibria for tracking errors in the
feedback attitude system, and its largest invariant set. Among
the four equilibria in this set, the equilibrium (Qk,ωk) = (I, 0) is
attractive as it corresponds to theminimumvalue ofVk(Qk,ωk).
Other three equilibria are unstable equilibria. All trajectories
that do not start on the stable manifolds of the other three equi-
libria converge to the stable equilibrium (I, 0). The Lyapunov
function along a state trajectory on any of these stable mani-
folds increases in value when going backwards in time. A state
trajectory on a stable manifold of any of this unstable equilibria
cannot approach itself outside of a closed neighbourhood con-
taining the equilibrium. Therefore, the stable manifolds of these
unstable equilibria from nowhere dense subsets of SO(3)× R

3.

Denote the union of these stable manifolds of the unstable equi-
libria asM. The complement ofM is therefore dense and open in
TSO(3) � SO(3)× R

3. All initial states that are in the comple-
ment SO(3)× R

3/M converge to the stable equilibrium (I, 0),
which makes its domain of attraction almost global.

6. Robustness analysis of discrete-time FTS attitude
tracking control scheme

The finite-time stability property of the attitude tracking con-
trol law given in Theorem 5.3 results in guaranteed convergence
of almost any initial attitude state to the desired state, given by
the tracking errors (Q,ω) = (I, 0), in finite time in the absence
of any disturbances to the discretised dynamics model. In the
presence of a bounded disturbance control input uDk in the
dynamics, all attitude tracking errors will converge to a bounded
neighbourhood of (I, 0) aswell. The following result gives a con-
servative statement relating the bound of tracking errors that
can be tolerated and bounds on the neighbourhood of (I, 0).

Corollary 6.1: Consider the discretised feedback system given
by the attitude kinematics and dynamics in the last two equa-
tions (15), and the control law (80). Let N ⊂ S × R

3, where S
is as defined in Equation (58), be a closed neighbourhood of (I, 0)
defined by

N := {
(Qk,ωk) : ‖sK(Qk)‖ ≤ smax and ‖ψk‖ ≤ �max < 1

}
.

(81)

If the norm of the disturbance in control input, uDk , satisfies the
following inequality:

‖uDk ‖ ≤
kl	t

(
�
(2/p)
max + s(2/p)max

)
�max

, (82)

then, the tracking errors (Q,ω) converge to the neighbourhoodN
in finite time.

Proof: Consider the discretised attitude dynamics of a rigid
body in LGVI form given in (15) disturbed by a control input
uDk ,

J�k+1 = FTk J�k + uk + uDk (83)

which has an additional term (uDk ) due to the disturbance con-
trol input, and noting that

ωk+1 = �k+1 − QT
k+1�

d
k+1

and

ψk(ωk,Qk) = ωk + klzK(Qk),

then, we can write

ψk+1 − ψk = �k+1 − QT
k+1�

d
k+1 −�k + QT

k�
d
k

+ kl
(
zK(Qk+1)− zK(Qk)

)
= J−1FTk J�k + J−1uk + J−1uDk − QT

k+1�
d
k+1

−�k + QT
k�

d
k + kl

(
zK(Qk+1)− zK(Qk)

)
= −�(ψk+1 + ψk)

(ψT
k Jψk)1−1/p + J−1u. (84)
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Substituting (84) into the time difference of discrete-time Lya-
punov function given in (67) and simplifying, we get

Vk+1 − Vk = 1
2
(ψk+1 + ψk)

TJ

[
−�(ψk+1 + ψk)

(ψT
k Jψk)1−1/p + J−1uDk

]

+ kp
〈
Qk − Qk+1,K

〉
= −ρk(ψT

k Jψk)
1/p − kp kl	t

(
sK(Qk)

TsK(Qk)
)1/p

+ 1
2
(ψk+1 + ψk)

TuDk . (85)

Now, since ‖ψk+1 + ψk‖ ≤ ‖ψk+1‖ + ‖ψk‖ ≤ 2�max, the last
term on the right side of the above equation is upper bounded
as follows:

1
2
(ψk+1 + ψk)uDk ≤ 1

2
‖ψk+1 + ψk‖‖uDk ‖ ≤ �max‖uDk ‖. (86)

From AB ≤ ‖A‖.‖B‖, we can rewrite the time difference of
Lyapunov function as

Vk+1 − Vk ≤ −ρk(ψT
k Jψk)

1/p − kp kl	t
( 〈I − Qk,K〉 )1/p

+ 1
2
‖ψk+1 + ψk‖‖uDk ‖

≤ −(ψT
k Jψk)

1/p − kl	t
(
kp 〈I − Qk,K〉 )1/p

+ 1
2
‖ψk+1 + ψk‖‖uDk ‖

≤ −kl	t
(
(ψT

k Jψk)
1/p + (

kp 〈I − Qk,K〉 )1/p)
+ 1

2
‖ψk+1 + ψk‖‖uDk ‖

≤ −kl	t
(
ψ
(1/p)
max + s(1/p)max

)
+�max‖uDk ‖. (87)

Therefore, Vk+1 − Vk is non-positive along the boundary of N
if

−kl	t
(
ψ
(1/p)
max + s(1/p)max

)
+�max‖uDk ‖ ≤ 0, (88)

which is a sufficient condition for all trajectories starting outside
the boundary of neighbourhood N to converge to this neigh-
bourhood of (I, 0). Expression (88) leads to (82) for the bound
on the norm of the disturbance uDk for which convergence of
errors to the neighbourhoodN of (I, 0) is guaranteed. �

Remark 6.1: In the presence of bounded disturbances and
internal parametric uncertainties in the dynamics of the rigid
body, state trajectories will converge to a bounded neighbour-
hood of (Q,ω) = (I, 0). On the other hand, based on a desired
size of this neighbourhood, one can find an upper bound on the
norm of external disturbances and internal parametric uncer-
tainties that can be tolerated for state trajectories to converge
to this neighbourhood. This can be done using the Lyapunov
analysis presented in the proof of the almost global finite-time
stability of the tracking control scheme given in Theorems 4.2
and 5.3.

7. Continuous finite-time stable tracking control on
TSE(3)

A FTS tracking control scheme in continuous time has been
reported in Prabhakaran, Sanyal, and Warier (2017). In this
scheme, the error dynamics in continuous time is given by

{
m ˙̃v = mg e3 − ϕc − vd,
Jω̇ = τc + J(ω×QT�d − QT�̇d)− (ω + QT�d)×J(ω + QT�d),

(89)

where τc and ϕc ∈ R
3 are obtained from the feedback control

laws in continuous time as follows:

τc = J

(
QT�̇d − κrH(sK(Q))(

sTK(Q)sK(Q)
)1−1/p w(Q,ω)

)

+ (QT�d)×J
(
QT�d − κrzK(Q)

)+ κrJ
(
zK(Q)× QT�d)

+ κrJ(ω + QT�d)× zK(Q)− kpsK(Q)

− L��(Q,ω)(
�(Q,ω)TL��(Q,ω)

)1−1/p (90)

and

ϕc = ge3 − v̇d + κt(ż + b̃)+ κtPr(ṽ + κtz)[
(ṽ + κtz)TPr(ṽ + κtz)

]1−1/p .

(91)

In Equations (90) and (91),

�(Q,ω) = ω + κzK(Q), (92)

H(x) = I − 2(1 − 1/p)
xTx

xxT, (93)

z(t) = b̃
(b̃Tb̃)1−1/p

, (94)

ż = (b̃Tb̃)1−1/pṽ − (2 − 2/p)(b̃Tb̃)−1/p(b̃Tṽ)b̃
(b̃Tb̃)2−2/p

, (95)

where Pr ∈ R
3×3 is a positive definite control gain matrix, and

p is as defined in Lemma 5.1. Further, L� is a positive definite
control gain matrix such that L� − J is positive semi-definite,
kp > 1 and the control gain κ is defined by

κp = σL,min

σJ,max
> 0.

These continuous control laws guarantee the finite-time stabil-
ity of the feedback tracking error dynamics given by (89) at
(Q,ω, b̃, ṽ) = (I, 0, 0, 0). These control laws are then sampled
over the time interval [t0, tf ] and with a time step size	t.

The following section presents numerical results obtained
by implementing this paper’s proposed FTS scheme in discrete
time compared to the results of the sampled continuous-time
FTS scheme.
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Figure 2. Block diagram of a quadcopter UAV control system.

8. Simulation results

This section presents numerical simulation results for the FTS
tracking control scheme in discrete time. These simulation
results are provided for a quadcopter UAV with a mass m =
4 kg, for time period of T = 5 s, and with time step size of	t =
0.01 s using discrete-time FTS control laws obtained in (47)
and (80). Figure 2 shows the block diagram of a control sys-
tem for controlling a quadcopter UAV to follow a time-varying
desired position, bdk . This system has two loops: an inner loop
for attitude control and an outer loop for position control. The
desired attitude (Rdk) that is to be tracked, is generated using
the desired control force vector given by an outer loop position
tracking scheme.

8.1 Numerical simulation results for discrete-time FTS
position and attitude tracking control schemes

A helical desired position trajectory with the following initial
conditions is used for both control loops:

bdk = bd(tk) = [0.4 sinπ tk 0.6 cosπ tk 0.4 tk]T,

b0 = [1 0 0]T, v0 = [0 0 0]T,

R0 = I, �0 = [0 0 0]T, �d
0 = [0 0 0]T.

The gains are selected after trial and error for the FTS discrete-
time attitude tracking scheme as follows:

P = 4 I3×3, β = 0.01, κ = 0.009,

kl = 0.01, � = 0.1,

and for the FTS sampled continuous time scheme as follows:

Pr = 5 I3×3, κt = 0.8,

L� = 3.5 I3×3, kp = 4.5, κr = 0.04,

which provide desirable and similar transient response char-
acteristics of both tracking control schemes when 	t = 0.01.
The time trajectory of the UAV tracking the desired trajectory
is shown in Figure 3 and it shows that the trajectory converges
to the desired values in a finite time stable manner.The results
of the numerical simulation for the discrete-time FTS track-
ing control laws obtained in (47) and (80) for 	t = 0.01 and
tf = 5 s are shown in Figure 4. Figure 4(a,b) show that the trans-
lational motion tracking errors converge to zero in finite time.
Figure 4(c,d) indicate the finite-time convergence of rotational
motion tracking errors to zero. The attitude tracking error is

Figure 3. Time trajectory of UAV.

parameterised by the principal rotation angle � of the attitude
error matrix Q, and is given by

� = cos−1
(
1
2
(
tr(Q)− 1

))
. (96)

Convergence of the attitude tracking error � in finite time, as
shown in Figure 4(d), implies thatR tracks the desired trajectory
Rd. The time plots of the control inputs fk and τk in Figure 4(e,f),
respectively, show that the control effort is within reasonable
bounds and practically achievable for multi-rotor UAVs. There-
fore, the discrete-time tracking control scheme proposed here is
able to track the desired trajectory in finite time.

8.2 Comparisonwith a sampled continuous-time tracking
scheme

The performance of the proposed FTS tracking control scheme
in discrete time is compared here to that of the sampled
continuous-time FTS tracking scheme presented in Section 7.
Result of numerical simulations are provided for the same
quadcopter UAV given above but for different time periods
of T = 5, 25, and 50 s, with different time step sizes of 	t =
0.01, 0.05, and 0.1 s and the same total number of time steps,
using discrete-time FTS control laws obtained in (47) and (80),
and the sampled continuous-time control laws given in Prab-
hakaran, Sanyal, and Warier (2017). Simulation results are
presented in Figures 5–9 to compare the performance of the
discrete-time FTS tracking scheme with a sampled continuous-
time FTS tracking scheme for different values of the time step size.
From these plots, one can conclude that the control law obtained
by sampling the continuous FTS control input does not ensure
the stability in tracking when the time step size changes. More-
over, to have a definite result of the comparison between results
of these two schemes, a parameter study that was first pro-
posed and used in Hamrah et al. (2019) is used here to confirm
how the value of the Lyapunov function behaves at certain time
instants. This tests whether the Lyapunov function increases in
value between two successive sampling instants, and whether
that increase is significant or is just an artifact of machine (float)
precision. The results of this comparison are given in Table 1,
where 	Vmax denotes the maximum positive value of the time
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Figure 4. Tracking errors and control laws for discrete-time FTS tracking control scheme for	t = 0.01 and tf = 5 s. (a) Position tracking error. (b) Velocity tracking error.
(c) Angular velocity error. (d) Attitude tracking error function. (e) Total thrust force. (f ) Torque control.

Figure 5. Tracking errors for sampled FTS continuous tracking control scheme for	t = 0.01 and tf = 5 s. (a) Position tracking error. (b) Velocity tracking error. (c) Angular
velocity error. (d) Attitude tracking error function.
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Figure 6. Tracking errors for discrete-time FTS tracking control scheme for	t =
0.05 and tf = 25 s. (a) Position tracking error. (b) Velocity tracking error. (c) Angular
velocity error. (d) Attitude tracking error function.

difference Vk+1 − Vk as:

	Vmax = max
[
(Vk+1 − Vk) > 0

]
, (97)

andVk denotes the sum of the values of the Lyapunov functions
for the position and attitude tracking errors as defined in (35)
and (66), respectively. The value of Vk+1 − Vk is expected to
be negative for a finite-time stable system until it converges to

Figure 7. Tracking errors for sampled FTS continuous tracking control scheme for
	t = 0.05 and tf = 25 s. (a) Position tracking error. (b) Velocity tracking error. (c)
Angular velocity error. (d) Attitude tracking error.

zero in finite time, which ensures the stability of the system in
finite time. On the contrary, a significant increase in the value of
	Vmax occurs for the sampled continuous FTS tracking scheme
as time step size increases, whereas	Vmax has a negligible value
(to machine precision) when the discrete-time FTS tracking
control scheme is implemented.
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Figure 8. Tracking errors for discrete-time FTS tracking control scheme for	t =
0.1 and tf = 50 s. (a) Position tracking error. (b) Velocity tracking error. (c) Angular
velocity error. (d) Attitude tracking error function.

9. Conclusion

This article proposes a discrete-time stable tracking control
scheme with finite-time stability for unmanned vehicles that
can be modelled as rigid bodies with one degree of freedom of
translational motion and three degrees of freedom of rotational
motion actuated. This control scheme is designed with two

Figure 9. Tracking errors for sampled FTS continuous tracking control scheme for
	t = 0.1 and tf = 50 s. (a) Position tracking error. (b) Velocity tracking error. (c)
Angular velocity error. (d) Attitude tracking error function.

loops: an inner loop for attitude control and an outer loop for
position control. In the outer loop, given a desired position tra-
jectory in an inertial coordinate frame, the desired control force
vector is obtained in discrete time to stabilise the desired tra-
jectory in finite time. This control force vector expressed in the
body-fixed frame is then used to generate a desired attitude tra-
jectory. In the inner loop to track this desired attitude trajectory,
a discrete-time finite-time stable (FTS) attitude tracking scheme
is developed and utilised. The outer loop for position tracking
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Table 1. Stability performance of discrete-time FTS vs. sampled continuous-time
FTS tracking control scheme on SO(3).

Tracking control scheme 	t(s) tf (s) 	Vmax

Discrete-time FTS 0.01 5 1.0991 × 10−15

0.05 25 4.0776 × 10−25

0.1 50 4.1364 × 10−25

Sampled Continuous FTS 0.01 5 2.3153 × 10−5

0.05 25 0.3166
0.1 50 1.7888

also uses a discrete-time FTS control scheme. The finite-time
stability of the overall tracking control scheme is proved using a
discrete-time Lyapunov analysis, which results in discrete-time
error dynamics in terms of translational and rotational motion
tracking errors. A two-step method is proposed for each of the
two control loops here, designed using a Lyapunov function that
is quadratic in vector-valued functions linear in velocity and
angular velocity tracking errors. Then, it is shown that position
and attitude tracking errors converge to zero when this vector-
valued function vanishes. This analysis results in discrete-time
control laws that guarantee the convergence of the position and
attitude states to the desired position and attitude trajectories in
a finite time interval. Analysis of robustness to bounded distur-
bance torque is also presented.Moreover, a comparison between
the performance of the proposed scheme and that of a sampled
continuous FTS scheme is studied here, and numerical results
show that a discrete-time FTS tracking control scheme is more
reliable for onboard computer implementation when we need
to work with a variety of input data frequencies. Future work
will look at a more comprehensive comparison of the proposed
discrete-time stable tracking control scheme with other state-
of-the-art sampled continuous-time tracking control schemes.
Further, results of indoor flight experiments on a quadrotor
unmanned aerial vehicle will be provided to verify the practical
performance of the proposed discrete-time FTS tracking con-
trol scheme in comparison to those of sampled continuous-time
schemes.
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