
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tcon20

International Journal of Control

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tcon20

Discrete-time data-driven control with Hölder-
continuous real-time learning

A. K. Sanyal

To cite this article: A. K. Sanyal (2021): Discrete-time data-driven control with Hölder-continuous
real-time learning, International Journal of Control, DOI: 10.1080/00207179.2021.1901993

To link to this article:  https://doi.org/10.1080/00207179.2021.1901993

Published online: 19 Mar 2021.

Submit your article to this journal 

Article views: 31

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tcon20
https://www.tandfonline.com/loi/tcon20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00207179.2021.1901993
https://doi.org/10.1080/00207179.2021.1901993
https://www.tandfonline.com/action/authorSubmission?journalCode=tcon20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tcon20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/00207179.2021.1901993
https://www.tandfonline.com/doi/mlt/10.1080/00207179.2021.1901993
http://crossmark.crossref.org/dialog/?doi=10.1080/00207179.2021.1901993&domain=pdf&date_stamp=2021-03-19
http://crossmark.crossref.org/dialog/?doi=10.1080/00207179.2021.1901993&domain=pdf&date_stamp=2021-03-19


INTERNATIONAL JOURNAL OF CONTROL
https://doi.org/10.1080/00207179.2021.1901993

Discrete-time data-driven control with Hölder-continuous real-time learning

A. K. Sanyal

Mechanical and Aerospace Engineering, Syracuse University, Syracuse, NY, USA

ABSTRACT
This work provides a framework for data-driven control of discrete-time systems with unknown dynamics
and outputs controllable by the inputs. This framework leads to stable and robust real-time control such
that a feasible output trajectory can be tracked. This is made possible by Hölder-continuous real-time sta-
ble learning schemes that act as discrete-time stable uncertainty observers. These observers learn from
prior input-output history and ensure finite-time stable convergence of estimation errors to a bounded
neighborhood of the zero vector if the system is Lipschitz-continuouswith respect to time, outputs, inputs,
internal parameters and states. In combinationwith nonlinearly stable controllers, thismakes the proposed
frameworknonlinearly stable and robust todisturbances,model uncertainties, andunknownmeasurement
noise. Nonlinear stability and robustness analyses of the observer and controller designs are carried out
using discrete Lyapunov analysis. A numerical experiment on a second-order system demonstrates the
performance of this nonlinear model-free control framework.
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1. Introduction

Data-driven control approaches are used for feedback control
of systems with uncertain or unknown input–output behaviour.
When only input–output behaviour of the system is observ-
able, then output regulation to a desired set point or output
trajectory tracking has to be based on data-driven (model-free)
controller and observer designs. This work provides a nonlinear
data-driven control framework for output tracking of systems
for which the measured output variables can be controlled by
the applied inputs, but the model describing the input–output
relation is unknown or uncertain. The main contribution of
this work is that it provides definite (quantifiable) guarantees on
nonlinear stability and robustness in real-time learning of the
unknown input–output dynamics and controlling the output
along feasible prescribed trajectories.

A majority of linear and nonlinear control approaches are
model-based for which a model of the dynamics of the sys-
tem being controlled is necessary. However, as the number and
variety of systems to which control theory is applied increases,
uncertainties and difficulties in modelling need to be overcome.
Of particular interest to this work is the large class of (nonlin-
ear) systems with uncertain or unmodelled dynamics that have
to be controlled in real-time. This class of systems includes,
for example, autonomous vehicles, walking robots, and elec-
tronic medical implants. For such systems, data-driven (i.e.
model-free) control techniques may be used for feedback con-
trol in real-time. The term ‘model-free control’ for uncertain
systems has been used in different senses and settings in the
published literature. These settings are quite varied, and range
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from ‘classic’ PIDs to feedback control using techniques from
neural nets, fuzzy logic, and soft computing to learn the uncer-
tainties in the dynamics, e.g. in Keel and Bhattacharya (2017),
Killingsworth andKrstic (2006), dos SantosCoelho et al. (2010),
Syafiie et al. (2011), Ren and Bigras (2017). A model-free con-
trol framework based on classical control, termed the ‘intelligent
PID’ (or ‘iPID’) scheme, was proposed in Fliess et al. (2008) and
Fliess and Join (2013). The iPID framework uses an ultra-local
model to describe the unknown input–output dynamics, and
estimates and uses this model for feedback control. In addition,
if the system is known to be differentially flat for the selected
outputs (Fliess et al., 1995), then a state trajectory can also be
tracked and uncertainties in the input-state dynamics can also
be estimated over time from themeasured outputs usingmodel-
free filtering techniques (Fliess et al., 2008; Trapero et al., 2007).
However, in the iPID framework, the ultra-local model is esti-
mated by a linear filtering scheme assuming measurements at
a sufficiently high sampling frequency (Mboup et al., 2009;
Tabuada et al., 2017). Some applications where similar model-
free control techniques have been considered are given in,
e.g. Roman et al. (2017), Younes et al. (2016), Villagra and Bala-
guer (2011) and Y. Chang et al. (2011). More recently, a data-
enabled predictive control (‘DeePC’) method was formulated
for data-driven control of unmodelled/uncertain systems that
is analogous to the classical model-predictive control (MPC)
technique for model-based control of linear systems in Coulson
et al. (2019). Data-driven control algorithms that use distur-
bance or uncertainty observers and maintain input constraints
have also been treated, e.g. in Polóni et al. (2014) and Polóni
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et al. (2017). Other recent data-driven control schemes based
on linear systems theory include (Novara & Formentin, 2018;
Tabuada& Fraile, 2019).However, none of these data-driven con-
trol techniques guarantee nonlinear stability and robustness in
discrete-time. Guaranteed robustness and nonlinear stability in
the sense of Lyapunov (1992) is required for wider applicabil-
ity and reliability of data-driven control approaches for systems
with modelling uncertainties and unknowns.

While most prior work has used continuous-time feedback
for data-driven control, the framework developed here uses
discrete-time Hölder-continuous nonlinear model-free estima-
tion and control for tracking desired output trajectories. The
main reason for the development of this framework here in
discrete time is because that makes it easier to implement
numerically and experimentally. This discrete-time framework
is implementable on embedded processors for real-time appli-
cations like autonomous vehicles and robotics. In addition,
the discrete-time representation of an unknown system with
known relative degree between inputs and outputs ‘naturally’
accounts for time the delay in the input–output system. This
is because the (unknown) discrete-time input–output system
representation considers the output as dependent on inputs
and outputs from previous sampling instants. This frame-
work lays the foundation for nonlinearly stable and robust
data-driven control in discrete time, using novel methods to
estimate the local input–output model and for tracking con-
trol. Our past research using Hölder-continuous finite-time
stable control and estimation schemes in continuous time
have appeared in, e.g. Bohn and Sanyal (2015), Viswanathan
et al. (2017), Sanyal, Warier, and Hamrah (2019) and Sanyal,
Warier, and Viswanathan (2019). The finite-time stable uncer-
tainty and output observers can be designed to converge in a
finite time period that is smaller than the settling time of the
controller. For tracking the desired output or state trajectory,
a Hölder-continuous nonlinear finite-time stable (FTS) track-
ing control scheme was used in Bohn and Sanyal (2015) and
Viswanathan et al. (2017). These FTS schemes are based on the
Lyapunov analysis in Bhat and Bernstein (2000), using Hölder-
continuous Lyapunov functions. More recently, we developed
a discrete-time version of these FTS schemes and used it for
tracking control (Hamrah et al., 2019). Here, we extend this
basic discrete-time analysis to provide finite-time stable learn-
ing of unknown dynamics in real-time. The resulting frame-
work for data-driven control provides guaranteed nonlinear sta-
bility of the overall feedback system without requiring high
frequencies for measurement or control. The overall empha-
sis in our approach is towards guaranteeing nonlinear stabil-
ity and robustness of the feedback system using FTS learning
of unknown dynamics. This follows up on our recent pre-
liminary work (C. Chang et al., 2020), which developed a
continuous-time version of this work and applied it to func-
tional electrical stimulation of muscles. Unlike this preliminary
work which considered only relative degree one (first-order)
input–output dynamics and had an asymptotically stable track-
ing controller, here we develop a general framework in discrete
time, that applies to any relative degree between inputs and
outputs and provides finite-time stability of the feedback sys-
tem with respect to uncertainty estimation errors and tracking
errors.

In the first part of our nonlinear model-free control frame-
work, basic theoretical results on nonlinear Hölder-continuous
finite-time stabilisation in discrete time are developed. The
second part of our framework uses these results to design
two nonlinearly stable and robust observers that predict the
unknown model describing the input–output dynamics locally
in state-space and time, based on prior observed input–output
behaviour. This is a critical component of our framework, as
these observers work as uncertainty observers that are used to
compensate for the unknown dynamics and ensure nonlinear
stability of the overall feedback loop. In the third part of this
framework, we design a nonlinearly stable, trajectory tracking
control scheme to track the desired output trajectory. This non-
linearly stable control scheme ensures convergence of the output
tracking error to zero in finite time if the uncertainty estimates
are perfect. It is shown to be nonlinearly stable and robust to
bounded errors in the uncertainty estimates. Further, if these
estimates are obtained from the uncertainty observers designed
in the second part of our framework, we show that the track-
ing errors are guaranteed to converge to a neighbourhood of
zero.

The remainder of this paper is organised as follows. The
mathematical formulation and assumptions on discrete-time
nonlinear systems along with the theory of Hölder-continuous
finite-time stability in discrete time, are developed in Section 2.
The basic result stated in Lemma 2.1 first appeared in Ham-
rah and Sanyal (2020). The remaining analytical results in this
paper, including Theorem 2.1 in Section 2, have not appeared
before. In Section 3, two finite-time stable uncertainty observers
are designed to estimate the unknown local model relating the
inputs and outputs of the nonlinear system. This model relates
the observed outputs of the system to the given inputs, and
accounts for the combined effects of unknown internal states
and unknown external inputs (uncertainties). This is another
novel contribution of this paper. Two novel model-free control
laws for output tracking are given in Section 4. These discrete
time control laws make the feedback system converge to the
desired output trajectory in a finite-time stable manner if the
estimated model converges exactly to the true input–output
dynamics. Section 5 provides numerical simulation results of
applying this nonlinear model-free control framework to out-
put trajectory tracking of a two-degree of freedom mechanical
system. The model of the system is assumed to be unknown for
purposes of control design, and it includes nonlinear friction
terms affecting the dynamics of both degrees of freedom. The
results of this numerical simulation agree with the analytical
stability and robustness properties of this control framework.
Finally, Section 6 provides a summary of the main results and
ends with planned future work.

2. Nonlinear system assumptions and finite-time
stability in discrete time

In the first part of this section, we lay out the assumptions
on discrete nonlinear systems for which the proposed frame-
work of data-driven control are applicable. In the second part of
this section, we give a result on the finite-time stability of such
discrete nonlinear systems.
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2.1 Assumptions on discrete nonlinear system for our
framework of data-driven control

Consider a discrete nonlinear system with m inputs, n outputs,
and l unknown internal parameters or states. We denote by
R the set of all real numbers, R

+ the set of all positive num-
bers, and R

+
0 the set of all non-negative numbers. The notation

(·)k = (·)(tk) denotes the value of a time-varying quantity at
sampling instant tk ∈ R

+
0 , with uk ∈ R

m as the input vector
comprising control inputs, yk ∈ R

n is the output vector consist-
ing of measured output variables, and zk ∈ R

l is the vector of
unknown (unobservable) internal parameters and states. Here,
k ∈W = {0, 1, 2, . . .} and W is the index set of whole numbers
including 0.

We use the superscript (μ) to denote theμth order finite dif-
ference of a quantity in discrete time. The forward difference
defined by

y(μ)

k := y(μ−1)
k+1 − y(μ−1)

k with y(0)
k = yk (1)

is used here, because of its simplicity and applicability. Let ν be
the relative degree of the input–output system. The unknown
discrete system can be expressed as

y(ν)

k = �(yk, y
(1)
k , . . . , y(ν−1)

k , zk, uk, tk), (2)

where� is unknown, and y(μ)

k is the μth order finite difference
defined by Equation (1). Using Equation (1), we can alternately
represent the system (2) as

yk+ν = ϕ(yk, yk+1, . . . , yk+ν−1, zk, uk, tk). (3)

Note that � ,ϕ : (Rn)ν × R
l × R

m × R
+
0 → R

n are possibly
time-varying but unknown or imperfectly known. The control
inputs uk are then designed so as to track a desired output trajec-
tory ydk = yd(tk). The following basic assumptions are made in
order to have a tractable discrete-time output tracking control
problem.

Assumption 2.1: The discrete-time nonlinear system given
by (2) (alternately (3)) has input–output dynamics�(· · · ) (alter-
nately ϕ(· · · )) that is unknown but Lipschitz continuous in all
arguments.

Assumption 2.2: The matrix Gk ∈ R
n×m is always full ranked

with m ≥ n, so that the outputs can be controlled by the inputs.
Further, inputs are applied simultaneously with output measure-
ments at time instants tk.

Assumption 2.3: The desired output trajectory ydk := yd(tk) to
be tracked by the discrete system (2) (alternately (3)), is obtained
by sampling a continuous and ν times differentiable trajectory in
time, yd(t), with bounded time derivatives up to order ν.

Let χk = (yk, yk+1, . . . , yk+ν−1, zk, uk, tk) denote the vec-
tor of variables on which the system (3) depends. Then

Assumption 2.1 implies that

‖yk+ν+1 − yk+ν‖ = L‖χk+1 − χk‖, (4)

where L is the Lipschitz constant. Further, ϕ(· · · ) can be repre-
sented as

ϕ(χk) = Fk +Gkuk, where Fk = F(χk) and Gk = G(χk),
(5)

where F : R
nν × R

l × R
m × R

+
0 → R

n and G : R
nν × R

l ×
R
m × R

+
0 → R

n×m are Lipschitz continuous in their argu-
ments. Note that the unknown F andG may not be unique for a
ϕ(· · · ). When the relative degree ν is unknown, ν can be iden-
tified using known techniques (e.g. He & Asada, 1993; Rhodes
& Morari, 1998), or a sufficiently high value that is larger than
the unknown relative degree may be assumed for model-free
control.

In practice, outputs are measured by sensors that usually
introduce noise, modelled by

ym(tk) = ymk = yk + ηk, (6)

where ηk ∈ R
l is a vector of additive noise. A nonlinearly sta-

ble filtering scheme can be used to filter out this measure-
ment noise. In particular, nonlinear finite-time stable observers
can filter out noise and provide rapid convergence, as shown
recently in Sanyal, Warier, and Hamrah (2019), Sanyal, Warier,
and Viswanathan (2019) and Wang et al. (2019).

2.2 Finite-time stabilisation in discrete time using Hölder
continuous feedback

This section gives a basic result on finite-time stability for dis-
crete time systems that lead to an Hölder-continuous system.
This result has the following benefits in our framework for
model-free control: (1) the added robustness of finite-time sta-
bility compared to asymptotic stability for nonlinear systems
when faced with the same intermittent or persistent distur-
bances (Bhat & Bernstein, 2000; Bohn & Sanyal, 2015); and (2)
convergence to zero errors in finite time makes it easier to anal-
yse stability and robustness of the feedback system after separate
observer and controller designs. This basic result has recently
appeared in Wang et al. (2019) and Hamrah et al. (2019). Here,
we give the same result with a simpler mathematical proof,
followed by a new result showing Hölder continuity of the
system.

Lemma 2.1: Consider a discrete-time system with outputs sk ∈
R
p. Let V : R

p→ R be a positive definite, decrescent and radially
unbounded (Lyapunov) function (Vidyasagar, 2002) of the out-
puts, and denote Vk := V(sk). Let α be a constant in the open
interval ]0, 1[. Denote γk := γ (Vk) where γ : R

+
0 → R

+
0 is a

positive definite function of Vk that satisfies the condition that
there exists ε ∈ R

+ such that

γk = γ (Vk) ≥ η := ε1−α for all Vk ≥ ε. (7)

Then, if Vk satisfies the relation

Vk+1 − Vk ≤ −γkVα
k , (8)

the discrete system is stable at s = 0 and sk converges to s = 0 for
k>N, where N ∈W is finite.
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Proof: Clearly, inequality (8) is a sufficient condition for asymp-
totic stability of the zero output s = 0, as it ensures that the
difference Vk+1 − Vk along output trajectories of the discrete-
time system is negative definite. The right-hand side of the
inequality (8) is zero if and only if Vk = 0, as γ (·) is a positive
definite function ofVk. Therefore, the sequence {Vk} is a mono-
tonically decreasing sequence in R

+
0 . Combining condition (7)

with inequality (8), we obtain

Vk+1 ≤ Vk − γkVα
k ≤ Vk − ηVα

k . (9)

The rest of the proof uses contradiction to arrive at the given
result. Note thatVk decreases at least as fast as the far right-hand
side of the inequality (9). Now define

ck := Vk/ε, (10)

where Vk = V(sk) is the value of the Lyapunov function at time
tk. Substituting this expression forVk in inequality (8), we obtain

Vk+1 − ckη
1

1−α ≤ −ηcαk (η)
α

1−α = −cαk η
1

1−α

⇒ Vk+1 ≤ (ck − cαk )η
1

1−α = (ck − cαk )ε.
(11)

From Equation (10) ck+1 := Vk+1/ε, and from inequality (11):

ck+1 ≤ ak where ak := ck − cαk . (12)

Next, we consider two cases: (1) ck ≤ 1; and (2) ck > 1. In
the first case, ck+1 ≤ ak ≤ 0 from expression (12), as α ∈]0, 1[.
Therefore, from (11) we get Vk+1 ≤ 0. This leads to a contra-
diction because Vk+1 = V(sk+1) is a positive definite function
of sk+1. Therefore, Vk+1 = 0 and as a result sk+1 = 0, which
leads to convergence of the output sj to the zero vector for all
j>N = k.

In the second case, when ck > 1, we see from Equation (12)
that ck+1 ≤ ak and ak > 0. Now, we repeat the previous few
steps defined by expressions (10)–(12) by replacing k← k+
1. As long as cj > 1⇔ aj > 0, this process can be continued
to obtain monotonically decreasing sequences of positive real
numbers {Vj} and {cj} as follows:

Vj+1 = cj+1ε where cj+1 ≤ aj := cj − cαj , j ∈W. (13)

Clearly, because α ∈]0, 1[, the sequence {cj} defined by
Equation (13) is monotonically decreasing and cj ∈ R

+ for
cj ≥ 1. Let N ∈W (N > k) be the smallest finite whole num-
ber such that cN ≤ 1 (and correspondingly aN ≤ 0) in this
sequence. Therefore, VN = cNε ≤ ε = η

1
1−α and aN = cN −

cαN ≤ 0. Then, from Equation (13), we have

VN+1 = cN+1ε ≤ aNε ≤ 0.

As before, this leads to a contradiction asVN+1 = V(sN+1) can-
not be negative by definition; it has to be zero. Consequently,
from the inequality (8), we see that Vj = 0 for j ≥ N + 1. As a
result, sj converges to s = 0 for j>N. �

Remark 2.1: Note that ε ∈ R
+ is not given by this result; the

result merely states that if such a positive ε exists that satisfies
condition (7), then finite-time stability of s = 0 in discrete time

is guaranteed. In fact, inequality (7) is easy to satisfy and holds
true for all positive definite class-K functions γk = γ (Vk). In
particular, positive definite sigmoid functions are a good choice
for γ (Vk).

The result below shows the Hölder continuity of a Lyapunov
function that satisfies condition (8) of Lemma 2.1.

Theorem 2.1: A discrete-time Lyapunov function that satisfies
inequality (8) is Hölder continuous in discrete time with exponent
1

1−α
.

Proof: From Lemma 2.1 and its proof, it is clear that Vj > 0
as long as Vj > ε. Further, it is also clear that Vj = 0 if Vk ≤ ε

for any k< j. Now consider indices i, j ∈W such thatVi,Vj > ε

(i.e. i, j<N, where N is as defined in the proof of Lemma 2.1).
Therefore, we have

Vi+1 − V0 = Vi+1 − Vi + Vi − Vi−1 + · · · + V1 − V0

≤ −η(Vα
i + · · · + Vα

0 ) < −(i+ 1)ηVα
i+1

⇒ V1−α
i+1 −

V0

Vα
i+1

< −(i+ 1)η, (14)

where we used the fact that Vi+1 < Vk for k< i+ 1. Re-
arranging inequality (14) and using Vi+1 > ε, we have

Vi+1 <

(
V0

Vα
i+1
− (i+ 1)η

) 1
1−α

< (υ − (i+ 1)η)
1

1−α , where υ = V0

εα
. (15)

A similar inequality holds if i is replaced by j in the expression
above. Therefore, we conclude that

|Vi+1 − Vj+1|
|i− j| 1

1−α

< ε + o(2) (16)

using the fact that ε = η
1

1−α , where o(2) denotes second and
higher order terms in |i− j|. Clearly, the above Hölder inequal-
ity holds trivially if either Vi+1 or Vj+1 or both are zero (i.e. i ≥
N and/or j ≥ N). Therefore, the sequence {Vk} ⊂ R

+
0 isHölder-

continuous in discrete time as given in the statement. �

Remark 2.2: The statement of Theorem 2.1 for the Lyapunov
function holds if the discrete-time system is replaced by a
continuous-time system satisfying

V̇ ≤ −ηVα ,

for constant η as was shown in Theorem 4.3 of Bhat and Bern-
stein (2000). However, thisHölder continuity result for discrete-
time systems has not appeared in prior publications, although
it was presumed to be true in our earlier work (Hamrah
& Sanyal, 2020; Wang et al., 2019).

The condition given in Lemma 2.1 can be satisfied easily for
quadratic Lyapunov functions, as shown in the main result of
the following section, which is in the form of a finite-time stable
uncertainty observer in discrete time.
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3. The ultra-local model and its estimation

In this section, we construct a control affine ultra-local model
(ULM) in discrete time that models the unknown dynamics as
an uncertain input to a control-affine system, and then estimates
this uncertainty from past input–output data. We design first
and second-order discrete-time nonlinear observers that esti-
mate this uncertain input. Convergence to this uncertain input
is achieved in finite time if this input is a constant vector; other-
wise, these observers are shown to be robust to bounded rates of
change of this uncertain input. This control-affine ULM along
with the uncertainty observer is used in Section 4 to construct
an output feedback control scheme to track the desired output
trajectory.

3.1 Ultra-Localmodel for unknown system

The idea of an ultra-local model that is local in output (or
state) space and in time, was proposed in the model-free con-
trol approach for SISO systems in Fliess and Join (2013). In this
work,we generalise this concept to a discrete timenonlinear sys-
temwith unknown dynamics of the form given by Equation (3),
as follows:

yk+ν = Fk + Gkuk, where Fk ∈ R
n, uk ∈ R

m, (17)

and Gk ∈ R
n×m is a full rank matrix that is designed or selected

appropriately, as part of the controller design. Note that the Fk
andGk so obtainedmay not be unique and in particular,may not
be equal to theFk andGk, respectively, in Equation (5), which is
part of the Assumption 2.1 for the system (3). However, without
any loss of generality, they can always be represented such that

Fk = F(yk, yk+1, . . . , yk+ν−1, zk, uk, tk),

and Gk = G(yk, yk+1, . . . , yk+ν−1, zk, uk, tk).
(18)

Further, based on Assumption 2.1, we can assume that

‖Fk+1 − Fk‖ ≤ LF‖χk+1 − χk‖,
‖Gk+1 − Gk‖ ≤ LG‖χk+1 − χk‖,

(19)

where LF and LG are Lipschitz constants and χk is as defined
before Equation (4).

The approach given here is centred around provable guar-
antees on nonlinear stability and robustness to the unknown
dynamics. To do this in an effective manner, the unknown
input–output dynamics, captured byFk ∈ R

n in Equation (17),
should be estimated in a stable and robust manner. We, there-
fore, consider the following problem.

Problem 3.1: Consider the unknown nonlinear system (3)
satisfying Assumptions 2.1, 2.2 and 2.3, with discrete con-
trol inputs uk := u(tk) ∈ R

m provided at sampling times
tk. Given the discrete time ultra-local model (17) of the
input–output dynamics with unknown Fk, estimate Fk from
past input–output history and design a feedback control scheme
to track the desired output trajectory ydk := yd(tk) in a nonlin-
early stable manner.

Note that as per Assumption 2.2, the system is input–output
controllable. In the following subsections of this section, we

design two nonlinear observers to estimateFk for later use out-
put feedback tracking control. These schemes (in isolation) can
also be used to identify these unknown dynamics using known
(feedforward) control inputs uk and influence matrix Gk. Note
that this influence matrix Gk can also be designed to satisfy
known control bounds, although we do not do that here.

3.2 Estimation of unknown input–output dynamics using
a first order Observer

Note that the model given by (17) is a generalisation of the
ultra-local model of Fliess and Join (2013), where Gk was a con-
stant scalar and only single-input single-output (SISO) systems
were considered. Here, we provide a first-order observer for this
unknown dynamics, i.e.Fk in Equation (17). The idea here is to
use the finite-time stable output observer design outlined in the
previous section in conjunction with a first-order hold to esti-
mate the unknown dynamics expressed by Fk in Equation (17)
based on past input–output history. Note that the control law for
uk cannot use feedback of Fk which is unknown due to causal-
ity; but it can use an estimate of Fk, denoted F̂k here, based
on past information on Fj for j ∈ {0, . . . , k− 1}. This approach
is very different from the approach used in the iPID frame-
work for continuous-time model-free control, which is based
on numerical differentiation and estimation of derivatives from
noisy signals in the Laplace domain (see Mboup et al., 2009).

Define the error in estimating Fk as follows:

eFk := F̂k − Fk. (20)

The following result gives a first order nonlinearly stable
observer for the unknown dynamics Fk.

Theorem 3.1: Let eFk be as defined by Equation (20), and let r ∈
]1, 2[ and λ > 0 be constants. Let the first order finite difference
of the unknown dynamics Fk, given by

�Fk := F (1)
k = Fk+1 − Fk (21)

be bounded as in the first of Equations (19). Let the control
influence matrix Gk be designed such that its first order finite dif-
ference is bounded as in the second of Equations (19). Consider
the nonlinear observer for Fk given by

F̂k+1 = D(eFk )eFk + Fk given F̂0,

whereD(eFk ) = ((eFk )TeFk )1−1/r − λ

((eFk )TeFk )1−1/r + λ
,

(22)

and Fk = yk+ν − Gkuk according to the ultra-local model (17).
This observer leads to finite time stable convergence of the esti-
mation error vector eFk ∈ R

l to a bounded neighbourhood of 0 ∈
R
n, where bounds on this neighbourhood can be obtained from

bounds on �Fk.

Proof: The proof of this result begins by showing that if

eFk+1 = D(eFk )eFk , (23)

whereD(eFk ) is as defined by Equation (22), then eFk converges
to zero in a finite-time stable (FTS) manner. This can be shown
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by defining the discrete-time Lyapunov function

VF
k := (eFk )TeFk . (24)

Taking the discrete-time difference of this Lyapunov function,
we get

VF
k+1 − VF

k = −γF
k (VF

k )1/r

where γF
k = (1− (D(eFk ))2)(VF

k )(1−1/r).
(25)

Note that D(eFk ) is a monotonically decreasing function
of ‖eFk ‖ ∈ R

+
0 , taking values in the range [−1, 1), so γF

k
is a positive definite function of VF

k = ‖eFk ‖2. Substituting
(eFk )TeFk = VF

k into the expression for D(eFk ) to evaluate γF
k

in Equation (25), we express γF
k as a function of VF

k :

γF
k = 4λ

(VF
k )2−2/r

((VF
k )1−1/r + λ)2

. (26)

Clearly, Equation (26) shows that γF
k := γ (VF

k ) is a class-K
function of VF

k . Further, it can be verified that

VF
N ≤ λ

1
1−1/r ⇐⇒ γF

N ≤ λ.

These two facts together allow as to conclude that this γF
k

(taking the role of γk in Lemma2.1) satisfies the sufficient condi-
tion (7) for finite-time stability of eFk , with a value of ε = λ

1
1−1/r .

Using the definition of eFk given by Equation (20) and the rela-
tion (23), one obtains the following discrete time observer for
F̂k:

F̂k+1 = D(eFk )eFk + Fk+1. (27)

The above expression leads to a finite-time stable observer for
the unknown dynamics (uncertain input) Fk that ensures that
the estimation error eFk converges to zero for k>N where N ∈
W is finite.

However, as mentioned earlier, Fk+1 is not available at time
tk+1 due to causality; therefore, it needs to be replaced by
a known quantity. This first-order observer design given by
Equation (22) replacesFk+1 in Equation (27)withFk = yk+ν −
Gkuk, which is known from the measured output and applied
input from the previous sampling instant. As a result, the esti-
mation error eFk evolves according to

eFk+1 := F̂k+1 − Fk+1 = D(eFk )eFk + Fk − Fk+1

= D(eFk )eFk −�Fk, where �Fk = Fk+1 − Fk. (28)

Therefore, this observer is a first-order perturbation of the ideal
FTS observer design for Fk as given by Equation (27), with
the perturbation coming from the first-order difference term
�Fk. Due to the FTS behaviour of this ideal observer for Fk,
the first-order observer design of Equation (22) will converge to
a neighbourhood of eFk = 0 for finite k, where the size of this
neighbourhood depends on bounds on�Fk. AsFk is Lipschitz
continuous, so ‖�Fk‖ is bounded according to the first of Equa-
tions (19). Clearly, the smaller the bounds on �Fk, the smaller

the neighbourhood of eFk = 0 that this observer will converge
to within finite time. �

In the following result, the observer given by Equation (22) is
analytically shown to be robust to known bounds on the norm
of the first difference �Fk in the unknown Fk.

Theorem 3.2: Consider the observer law (22) for the unknown
Fk in the ultra-local model (17) modelling the unknown sys-
tem (3). Let the first order difference �Fk defined by (21) be
bounded according to

‖�Fk‖ ≤ BF , (29)

where BF ∈ R
+ is a known constant. Then the observer (esti-

mation) error eFk is guaranteed to converge to the neighbourhood
given by

NF := {eFk ∈ R
n : ρ(eFk )‖eFk ‖ ≤ BF } (30)

for finite k>N, N ∈W, where

ρ(eFk ) := ζ(eFk )

1−
√
1− ζ(eFk )

and ζ(eFk ) := 1− (D(eFk ))2 = γF
k

((eFk )TeFk )1−1/r
.

(31)

Proof: Using the Lyapunov function defined by Equation (24)
and the observer Equation (22), we obtain

VF
k+1 − VF

k = (eFk+1 + eFk )T(eFk+1 − eFk )

= ((D(eFk ))2 − 1)(eFk )TeFk − 2D(eFk )�FTk e
F
k

+�FTk �Fk.

Taking into account the bound (29) and the expression for γF
k

given by Equation (25), we get an upper bound on the first
difference of this Lyapunov function as follows:

VF
k+1 − VF

k ≤ −γF
k (VF

k )1/r + 2|D(eFk )|BF‖eFk ‖ + (BF )2

= −ζ(eFk )‖eFk ‖2 + 2|D(eFk )|BF‖eFk ‖ + (BF )2, (32)

using the definition of the Lyapunov function (24) and
Equation (31) for ζ(eFk ) in the last step. For large enough ini-
tial (transient) ‖eFk ‖, the right-hand side of the inequality (32)
is negative, and we get

ζ(eFk )‖eFk ‖2 + 2|D(eFk )|BF‖eFk ‖ − (BF )2 > 0,

which can be solved as a quadratic inequality expression in‖eFk ‖
with coefficients that depend on eFk . Noting that ζ(eFk ) = 1−
(D(eFk ))2, this leads to the condition

ζ(eFk )‖eFk ‖ > BF [1−
√
1− ζ(eFk )], (33)

for real positive solutions of ‖eFk ‖ for which VF
k+1 − VF

k < 0 is
guaranteed. The discrete Lyapunov function VF

k is monotoni-
cally decreasing for such ‖eFk ‖ large enough to satisfy inequal-
ity (33), which it will until a finite value of k, say k = N. There-
fore, the observer error eFk is guaranteed to converge to the
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neighbourhood NF of 0 ∈ R
n given by Equations (30)–(31)

and will remain in this neighbourhood (which is positively
invariant) for k>N. �

Remark 3.1: This first-order observer can become unstable if
�Fk escapes (becomes unbounded) in finite time at a rate faster
than that dictated by the design of D(eFk ). However, the Lips-
chitz continuity condition imposed by Equations (19) ensures
that this cannot happen. The Hölder continuity of the feed-
back system, as given by Theorem 2.1, guarantees robustness to
Lipschitz continuous uncertainties according to Theorem 3.2.

Remark 3.2: Note that the bound on ‖eFk ‖ given by the suf-
ficient condition in Theorem 3.2 is conservative. Moreover, as
�Fk is bounded according to the Lipschitz condition (19), the
bound on it given by (29) is already likely to be conservative
for small changes in states between successive output measure-
ments. Therefore, this sufficient condition is conservative.

3.3 Estimation of unknown input–output dynamics using
a second order Observer

In this subsection, we design a second order observer for Fk
based on the developments in the previous subsection. To start
the design process, we reverse Equation (21) to obtain

Fk+1 = Fk +�Fk. (34)

The second-order observer design is based on the above expres-
sion, as follows:

F̂k+1 = F̂k +�F̂k, (35)

where �F̂k is the estimate of �Fk. In addition, define the error
in estimating �Fk as follows:

e�k := �F̂k −�Fk. (36)

The following result gives the second order observer designed
to estimate Fk and �Fk.

Theorem 3.3: Let e�k be as defined by Equation (36), and eFk ,
r ∈]1, 2[ andλ > 0 be as defined inTheorem 3.1. Further, letD(·)
be as defined by Equation (22) in Theorem 3.1, and let the second
order finite-time difference given by

�2Fk := F (2)
k−1 = Fk+1 − 2Fk + Fk−1 (37)

be bounded as obtained from the first of Equations (19). Let the
control influence matrix Gk be designed such that its first-order
finite difference is bounded as in the second of Equations (19).
Consider the nonlinear observer given by

F̂k+1 = D(eFk )eFk + Fk +�F̂k given F̂0,

where �F̂k = D(e�k−1)e
�
k−1 +�Fk−1, (38)

and Fk = yk+ν − Gkuk according to the ultra-local model (17).
This observer leads to finite time stable convergence of the esti-
mation errors (eFk , e�k ) ∈ R

n × R
n to bounded neighbourhoods

of (0, 0) ∈ R
n × R

n, where these bounds can be obtained from
bounds on �2Fk.

Proof: The proof of this result starts by noting that the ideal FTS
observer law forFk given by Equation (27) can also be expressed
as

F̂k+1 = D(eFk )eFk + Fk +�Fk, (39)

because the last two terms on the right-hand side of this expres-
sion add up to Fk+1. The second-order observer law given
by Equation (38) is obtained by replacing �Fk on the RHS
of Equation (39) with its estimate. The estimate �F̂k would
converge to the true value �Fk in finite time, if it is updated
according to the (ideal) observer law

�F̂k = D(e�k−1)e
�
k−1 +�Fk. (40)

Note that this ideal observer for �Fk is of the same form as
the ideal FTS observer law for Fk given by Equation (27). Fur-
ther, like the ideal observer (27), the observer Equation (40) is
not practically implementable because�Fk is unknown at time
tk (because Fk+1 is unknown). As we did with the first order
observer in Theorem 3.1, we replace�Fk in (40) with its previ-
ous value, assuming that the change in this quantity is small in
the time interval [tk−1, tk]. This leads to the following observer
law for �Fk:

�F̂k = D(e�k−1)e
�
k−1 +�Fk−1. (41)

The resulting second-order observer is therefore given by Equa-
tions (38). To show that this is indeed second order, the evolu-
tion of the estimation error eFk in discrete time is obtained as
below

eFk+1 := F̂k+1 − Fk+1 = D(eFk )eFk +D(e�k−1)e
�
k−1

+ Fk +�Fk−1 − Fk+1

= D(eFk )eFk +D(e�k−1)e
�
k−1 −�2Fk, (42)

where �2Fk is as defined by Equation (37). The last line in
the above expression is obtained by substituting for �Fk−1
in the previous line, using the definition of �Fk given by
Equation (21). The remainder of the proof of this result uses the
same arguments as in the last part of the proof of Theorem 3.1,
with �Fk replaced by �2Fk and �Fk, �Gk bounded as in
Equations (19). �

Remark 3.3: Sufficient conditions on the bounds on
neighbourhoods of 0 ∈ R

n that the estimation errors eFk , e�k ∈
R
n converge to for the observer in Theorem 3.3 can be obtained

in a manner similar to the bounds given by Theorem 3.2 for the
estimation error obtained from the observer in Theorem 3.1.

Remark 3.4: It is clear from the constructive proofs of The-
orems 3.1 and 3.3 that higher-order observers for Fk may be
constructed using a similar process. For example, a third-order
observer can be constructed by replacing �Fk−1 in the sec-
ond line of Equation (38) with �Fk−1 +�2F̂k−1 and find-
ing an appropriate update law for �2F̂k−1. Clearly, the added
computational burden of higher-order observers makes them
unattractive for implementation when the higher-order differ-
ences of the discrete signalFk are known to bewithin reasonable
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bounds. In most situations, the uncertaintyFk is Lipschitz con-
tinuous as given by Equation (19), and bounds on �Fk and
�2Fk can be obtained; therefore, these low order observers are
adequate.

Remark 3.5: Note that both the observers given by Theo-
rems 3.1 and 3.3 provide exact finite-time stable convergence
of estimation errors eFk (and e�k for Theorem 3.3) to zero if Fk
is constant. Therefore, the resulting feedback loop with either
of these uncertainty observers rejects constant unknown input
signals Fk.

4. Model-free nonlinearly stable feedback tracking
control

In this section, we design tracking control laws for the con-
trol input uk from the output yk, the desired output ydk , and the
estimate of the ultra-local model F̂k constructed from output
measurement yk and past input–output history as described in
Section 3. This section provides two nonlinear model-free out-
put feedback tracking control schemes that solve Problem 3.1
in Section 3.1. The control design process is based on Assump-
tions 2.1, 2.2 and 2.3 for the discrete nonlinear system (2), and
is designed to track a desired output trajectory for a system
expressed by the ultra-local model (17). The control designs
given heremaymake use of either of the nonlinear observers for
the ultra-local model given in Sections 3.2 and 3.3, but is inde-
pendent of these observers designed in the previous section.
They can be used in conjunction with other uncertainty (or
ultra-local model) observers that do the same task.

4.1 First output trajectory tracking control law

Let yd : R→ R
n be a Cν function that gives a desired output

trajectory that is ν times differentiable according to Assump-
tion 2.3, and denote ydk := yd(tk) for {tk} ⊂ R

+
0 . Considering

Problem 3.1, define the output trajectory tracking error

eyk = yk − ydk where ydk = yd(tk). (43)

The first control law design presented here has the following
objectives: (1) to ensure that the feedback system tracks the
desired trajectory in a nonlinearly stable manner; and (2) to
ensure that the tracking error is ultimately bounded by the same
ultimate bounds that bound the observer error in the model
estimate, eFk .

Proposition 4.1: Consider an unknown input–output system
described by the ultra-local model (17) with the control law

Gkuk = ydk+ν − F̂k, (44)

where the ydi = yd(ti) describe a desired output trajectory for
the time sequence {ti} ⊂ R

+
0 as in Equation (43). The trajectory

tracking error eyk defined by (43) then satisfies

eyk+ν
+ eFk = 0, (45)

where eFk is the model estimation error defined by (20). In par-
ticular, if the model estimate F̂k is given by the observer in

Theorems 3.1 or 3.3, then eyk+ν
converges to a bounded neighbour-

hood of 0 ∈ R
n in finite time (for finite k), where the bounds on

this neighbourhood are given by the same bounds that bound the
estimation error eFk .

Proof: The short proof starts by noting that

yk+ν − ydk+ν = Fk + Gkuk − ydk+ν . (46)

Now define

wk := Gkuk + F̂k. (47)

Substituting for Gkuk from Equation (47) into Equation (46), we
obtain

eyk+ν
= Fk + wk − F̂k − ydk+ν = wk − eFk − ydk+ν . (48)

After substituting the control law Equation (44) into expres-
sion (48) and collecting terms, we get Equation (45). �

An immediate corollary of this result follows.

Corollary 4.1: If the uncertainty modelled by Fk in the ultra-
local model (17) is constant, then the control law (44) along with
the observer (22) or (38), lead to stable finite-time convergence of
tracking error eyk to zero.

This follows immediately from Remark 3.5 about the uncer-
tainty (ultra-local model) observers given in Section 3, and
Proposition 4.1. Although the control law (44) is simple to
implement, note that it does not include direct feedback of the
output tracking error, eyk. Thismay lead to a lack of robustness to
errors in measuring the output signal yk. The following subsec-
tion gives another control law that does not have this drawback
and is robust to output measurement errors.

4.2 Second output trajectory tracking control law

The second tracking control law follows from:

yk+ν = F̂k + Gkuk if eFk = 0. (49)

In this case, the output tracking error satisfies

eyk+ν
= F̂k + Gkuk − ydk+ν . (50)

The statement below gives a tracking control law that includes
feedback of the output tracking error.

Theorem 4.1: Consider an unknown input–output system
described by the ultra-local model (17). Let eyk be as defined by
Equation (43), and let s ∈]1, 2[ andμ ∈ R

+ be constants. Let the
control law for the system be given by

Gkuk = ydk+ν − F̂k + C(eyk+ν−1)e
y
k+ν−1,

where C(eyj ) =
((eyj )

Teyj )
1−1/s − μ

((eyj )Te
y
j )

1−1/s + μ
, (51)
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and the ydj = yd(tj) describe a desired output trajectory for the
time sequence {ti} ⊂ R

+
0 as in Equation (43). Then the sys-

tem (17) with the unknown dynamics Fk along with the control
law (51), satisfies the error dynamics

eyk+ν
+ eFk = C(eyk+ν−1)e

y
k+ν−1. (52)

In particular, if the uncertainty estimate F̂k is obtained from the
observer law (22) of Theorem 3.1 or (38) of Theorem 3.3, then
eyk+ν

converges in a stable manner to a bounded neighbourhood
of 0 ∈ R

n after finite time (i.e. for finite k ∈W).

Proof: Webegin the proof of this result by noting that if eFk = 0,
then eyk+ν

satisfies Equation (50). In this situation, the estima-
tion of Fk is perfect, and finite-time stable convergence of the
output tracking error to zero is guaranteed if

eyk+ν
= C(eyk+ν−1)e

y
k+ν−1, (53)

with C(eyj ) defined as in Equation (51). Note that the design of
C(eyj ) is similar to the design ofD(eFk ) in the observer law (22).
Defining the following Lyapunov function for the output
tracking error:

Vy
k := (eyk)

Teyk, (54)

we can easily show that the error dynamics (53) leads to finite-
time stable convergence of the output tracking error eyk to
zero; this would parallel the stability analysis in Theorem 3.1
for the model (uncertainty) estimation error eFk . Based on
Corollary 4.1, we know that perfect estimation of Fk hap-
pens when Fk is constant, for example; this is one case where
eFk = 0 for k>N and a finite N ∈W. In all such situations,
Equation (53) ensures convergence of the output tracking error
eyk to zero in (an additional) finite amount of time.

More generally, if eFk reaches a bounded neighbourhood of
the zero vector in R

n, as would be the case if the observer laws
given by either (22) of Theorem 3.1 or (38) of Theorem 3.3 are
used, then the control law (51) leads to the following feedback
dynamics:

yk+ν = ydk+ν − eFk + C(eyk+ν−1)e
y
k+ν−1, (55)

when substituted into the ultra-local model (17). Re-arranging
terms in Equation (55), we get the error dynamics (52). Note
that the error dynamics (52) is a perturbation of the finite-
time stable tracking error dynamics given by (53), where the
perturbation is due to the bounded error eFk in estimating the
unknown dynamics. �

In the following subsection, we provide results on the robust-
ness of this trajectory tracking control law in the presence
of bounded estimation error eFk in estimating the unknown
dynamicsFk and bounded measurement error (noise) ηk in the
measured outputs yk.

4.3 Robustness of second output tracking control scheme

The convergence of the output tracking error eyk to zero for the
control laws (44) in Proposition 4.1 and (51) in Theorem 4.1,

is contingent upon eFk converging to zero in finite time, which
happens in the special case that Fk is constant according to
Corollary 4.1. However, the usefulness of this control law (51) is
its robustness to errors in the estimation of Fk, as given by the
following result.

Proposition 4.2: Consider the feedback system consisting of the
unknown system given by the ultra-local model (17), the observer
law (22) or the observer law (38), and the control law (51). Let the
estimation error eFk in the unknown Fk be bounded according to

‖eFk ‖ ≤ B for k > N, (56)

where B ∈ R
+ and N ∈W are known. Then the tracking error eyk

converges to the neighbourhood given by

N y := {eyk ∈ R
n : σ(eyk)‖e

y
k‖ ≤ B}, (57)

for k > N′ > N, N′ ∈W, where

σ(eyk) :=
β(eyk)

1−
√
1− β(eyk)

, β(eyk) := 1− (C(eyk))
2. (58)

Proof: The proof of this result is similar to the proof
of Theorem 3.2. The feedback tracking error eyk satisfies
Equation (52). The first difference of the Lyapunov function (54)
is evaluated as follows:

Vy
k+1 − Vy

k = (eyk+1 + eyk)
T(eyk+1 − eyk)

= ((C(eyk))
2 − 1)(eyk)

Teyk − 2C(eyk)(e
F
k )Teyk + (eFk )TeFk .

With the bound on eFk given by (56) for k>N, we get an
upper bound on the first difference of this Lyapunov function
as follows:

Vy
k+1 − Vy

k ≤ −β(eyk)‖e
y
k‖2 + 2|C(eyk)|B‖e

y
k‖ + B2, (59)

using the expression forVy
k in Equations (54) and (58) for β(eyk).

The remainder of this proof follows the same last few steps as the
proof of Theorem 3.2, with the appropriate substitutions, i.e. eFk
replaced by eyk, D(eFk ) by C(eyk), B

F by B, and ζ(eFk ) by β(eyk).
This leads to the conclusion that for k > N′ for some whole
number N′ > N, the tracking error eyk converges to the neigh-
bourhood of the origin inR

n given by Equations (57)–(58). �

In the presence of output measurement errors, an output
observer can be implemented that filters out measurement
noise and gives output estimates. The above result can then be
extended to show robustness to both output estimation errors
and model (uncertainty) estimation errors in this situation, as a
result below shows.

Corollary 4.2: Consider the feedback system consisting of the
unknown system given by (17), with output measurements cor-
rupted by bounded noise ηk ∈ R

n as given by (6). Let a stable
output observer provide output estimates ŷk with bounded esti-
mation errors eok := ŷk − yk. Consider the feedback tracking con-
trol law Equation (51) with the ‘observed’ tracking error now
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defined as êyk := ŷk − ydk , used in conjunction with either of the
ultra-local model (uncertainty) observers given by Equations (22)
or (38). Then the resulting feedback system is (Lyapunov) sta-
ble and robust to errors in the ultra-local model estimate eFk and
the bounded observer error eok. Further, if e

F
k is bounded accord-

ing to (56), then the observed tracking error êyk converges to a
neighbourhood of the form N̂ y where

N̂ y := {êyk ∈ R
n : σ(êyk)‖ê

y
k‖ ≤ B}, (60)

for k > N′ > N, N′ ∈W, where σ(·) is as defined by (58) and N
is according to (56).

Proof: The proof of this result is identical to that of Proposi-
tion 4.2, with the substitution of the feedback control law (51)
in terms of êyk:

Gkuk = ydk+ν − F̂k + C(êyk+ν−1)ê
y
k+ν−1, (61)

into the ultra-local model (ULM) given by Equation (17). �

In the next section, we numerically apply this control scheme
with the first-order ULM observer in Section 3.2.

5. Numerical simulation results

Here, we provide numerical simulation results of this model-
free tracking control framework applied to an inverted pendu-
lum on a cart with nonlinear friction terms affecting themotion
of both degrees of freedom. The dynamics model of this sys-
tem, unknown to the controller, is described in Section 5.1. The
numerical results of the control scheme are given in Section 5.3.

5.1 Inverted pendulum on cart system

The inverted pendulum on the cart is a two-degree-of-freedom
mechanical system, with the cart position x considered posi-
tive to the right of a fixed origin and the angular displacement
θ considered positive counter-clockwise from upward vertical,
as shown in Figure 1. The inputs to the system are a horizontal
force on the cart denoted F and a torque applied to the pen-
dulum motor where it is attached to the cart denoted τ . The
outputs are the cart position x and the angular displacement of
the pendulum θ . Therefore, this is a two-input and two-output
system, unlike the usual single-input inverted pendulum on a
cart example considered with only the horizontal cart force as
an input. The mass and rotational inertia of the pendulum are
m and I respectively, its length is 2l, and the mass of the cart is
M. A dynamics model of the system, which is unknown for the
purpose of control design, is used to generate the desired output
trajectory to be tracked. Then the model-free control scheme is
used to track this desired trajectory.

For simulation purposes, the inverted pendulum on a cart
system is subjected to a nonlinear friction force acting on the
cart’smotion, and a nonlinear friction-induced torque acting on
the pendulum. The friction force acting on the cart is denoted
Fx and the friction torque acting on the pendulum is denoted

Figure 1. Inverted pendulum system to which our nonlinear model-free control
framework is applied.

Fθ , and they are given by

Fx = cx tanh ẋ, Fθ = cθ tanh θ̇ . (62)

Note that the hyperbolic tangent function ensures that these
frictional effects get saturated at high speeds (ẋ and θ̇). There-
fore, the dynamics model of this system, which is unknown for
the purpose of control design, is given by

M(q)q̈+D(q, q̇) = u, q =
[
x
θ

]
,

M(q) =
[

M +m −ml cos θ
−ml cos θ I +ml2

]
,

D(q, q̇) =
[
mlθ̇2 sin θ + cx tanh ẋ
cθ tanh θ̇ −mgl sin θ

]
.

(63)

The input and output vectors are

u =
[
F
τ

]
, y = q =

[
x
θ

]
. (64)

For the purpose of the numerical simulation, the parameter
values selected for this system are

M = 1.5 kg, m = 0.5 kg, l = 1.4m, I = 0.84 kgm2,

g = 9.8m/s2, cx = 0.028N, cθ = 0.0032Nm.
(65)

The desired trajectory was generated by applying the following
model-based control inputs (force and torque) to the cart and
pendulum:

F = mlθ̇2 sin θ − 2(M +m sin2 θ)g sin θ

− (M +m)g sin θ , τ = −mgl sin θ .

This generates an output trajectory yd(t) = [xd(t) θd(t)]T that is
oscillatory, as depicted in Figure 2 in Section 5.3. Note that this
dynamics model and model-based control used here is purely
for the purpose of trajectory generation and to demonstrate the
working of the model-free control framework outlined in this
paper.
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Figure 2. Desired trajectory generated for T = 70 seconds for inverted pendulum
on cart system.

5.2 Discretisation of continuous dynamicsmodel

The dynamics model and control law for the inverted pendu-
lum on cart system given in Section 5.1, are discretised here
using forward difference schemes for generalised velocities and
accelerations of the two degrees of freedom. Denoting outputs
and inputs in discrete time by yk := qk = q(tk) and uk := u(tk)
as before and the time step size by �t := tk+1 − tk, we get the
following discretisation of the continuous dynamics (63)

yk+2 − 2yk+1 + yk
�t2

= (M(yk))−1
(
uk −D(yk,

yk+1 − yk
�t

)

)
,

(66)
where M(·) and D(·, ·) are as defined in Equation (63). This
leads to the following second order discrete-time system:

yk+2 = Fk +Gkuk, where Gk = �t2(M(yk))−1

and Fk = 2yk+1 − yk −�t2(M(yk))−1D
(
yk,

yk+1 − yk
�t

)
,

(67)
where Fk and Gk have the meanings as defined by Equation (5).
In the numerical simulation results shown in the next subsec-
tion, this discrete time system is used for generating the desired
output trajectory starting from a given initial state vector and
with the control laws given by Equations (66) sampled at time
instants tk. It is then used to simulate the performance of the
data-driven control approach outlined in Sections 3 and 4 with
the discrete dynamics (67) unknown to the control law.

5.3 Simulation results for control scheme

Here, we present numerical simulation results for the model-
free tracking control scheme applied to the system described by
Equations (63)–(65). A trajectory is generated for this system
using the control scheme (66) sampled in discrete time, with the
initial states:

[
qd(0)
q̇d(0)

]
=

⎡
⎢⎢⎣
xd(0)
θd(0)
ẋd(0)
θ̇d(0)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0.45 m
−0.14 rad
−0.3m/s
0.05 rad/s

⎤
⎥⎥⎦ . (68)

The generated trajectory yd(t) = θd(t) for a time interval of
T = 70 s is depicted in Figure 2.

The control scheme given by Theorem 4.1 is applied to this
system to track this desired trajectory. For this simulation, the
initial estimated states are

[
q̂(0)
˙̂q(0)

]
=

⎡
⎢⎢⎢⎣
x̂(0)
θ̂(0)
˙̂x(0)
˙̂
θ(0)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎣

0m
0.102 rad
0m/s
0 rad/s

⎤
⎥⎥⎦ . (69)

Output measurements are assumed at a constant rate of 100 Hz,
i.e.sampling period �t = 0.01 s. In the simulation, the mea-
surements are generated by numerically propagating the true
discrete-time dynamics of the inverted pendulum on cart sys-
tem given by Equation (67), and adding noise to the true outputs
yk = qk. The additive noise is generated as high frequency and
low amplitude sinusoidal signals, where the frequencies are also
sinusoidally time-varying. A finite-time stable output observer
given by

ŷk+1 = yk+1 + B(eok)e
o
k, where e

o
k = ŷk − yk,

and B(eok) =
((eok)

TLeok)
1−1/p − β

((eok)
TLeok)

1−1/p + β
.

(70)

with the observer gains

L = 2.1, β = 2, and p = 7
5
, (71)

is used to filter out noise from the measured outputs. The first
order ultra-local model observer given by Theorem 3.1 is used,
with observer gains

λ = 1.5, and r = 9
7
. (72)

This observer is initialised with the zero vector, i.e. F̂0 = 0. The
control law (51) is then used to compute the control inputs uk.
The control gains used in this simulation are

s = 11
9
, μ = 0.35, and Gk = �t

[
0.559 0.196
0.196 0.657

]
,

(73)
where Gk is selected to be symmetric and positive definite based
on the expected form for a mechanical system.

Simulation results for the estimation error in estimating the
unknown Fk according to the observer given by Theorem 3.1
in Section 3.2 is depicted in Figure 3. Simulation results for the
tracking control performance and control input are shown in
Figure 4. The plot on the top shows the output trajectory track-
ing error over the simulated duration. Note that the tracking
error settles down towithin an error boundless than about 0.5m
in cart position and 0.05 rad in pendulum angle in steady-
state, after an initial brief period of transients. The time plot of
the control inputs is shown in the bottom plot. These control
input profiles show some high-frequency oscillations in track-
ing the desired trajectory that seem to correlate with the oscil-
lations seen in the ultra-local model observer error in Figure 3.
Futureworkwill deal with reducing these transients by using the
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Figure 3. Estimation error in ultra-local model estimation (bottom) for inverted
pendulum on cart system with model-free control.

Figure 4. Output trajectory tracking error (top) and control input (bottom) for
inverted pendulum on cart system with model-free control.

integral term(s) in the observer designs to produce smoother
estimates of the output and ultra-local model. A reference gov-
ernor may also be used to modify the reference (desired) output
trajectory based on current estimates of outputs as in Garone
and Nicotra (2016).

Remark 5.1: Although the schemes given here assume that the
output space is a vector space, the angle output for this inverted
pendulum on cart example is on the circle S

1, which is not
a vector space. Therefore, the observer and control laws out-
lined in the earlier sectionsmay lead to unwinding, even though
that does not happen for the numerical simulation reported
here. Themodel-free observer and controller design framework
outlined here will be extended to systems evolving on non-
Euclidean output (or state) spaces in the future to address this
issue.

6. Conclusion

This paper presents a framework for data-driven (model-free)
control that guarantees nonlinear stability and robustness for
output tracking control with the feedback of output measure-
ments in discrete time. The formulation presented here is devel-
oped in discrete time, and uses the concept of an ultra-local
model used tomodel unknown input–output behaviour, similar
to the linear model-free control approach formulated in the last
decade. This formulation begins with a finite-time stabilisation
scheme in discrete-time that leads to a Hölder-continuous feed-
back system. This finite-time stabilisation scheme is then used
to develop nonlinearly stable and robust observers to estimate
in real-time the ultra-local model that models the unknown
input–output dynamics, from past input–output history. The
estimates of the unknown dynamics are then used for compen-
sation of these unknowns (considered as an uncertain input)
in a nonlinear output feedback tracking control law that is
designed to track a desired output trajectory that is smooth, in a
nonlinearly stable and robust manner. Nonlinear stability anal-
ysis shows the stability of the feedback compensator combining
the nonlinear observer and nonlinear control law when the
change in the discrete-time system dynamics modelled by the
ultra-local model has a bounded finite difference. A numerical
simulation experiment is carried out on an inverted pendu-
lum on a cart system with nonlinear friction, for which the
inputs are the horizontal force applied to the cart and a torque
applied to the pendulum, and the outputs are the cart hori-
zontal displacement and angular displacement of the pendulum
from the upward vertical. The simulation includes bounded
noise in measured outputs. The model of the dynamics of this
system is unknown to the nonlinear observers and controller
designed using our nonlinear model-free control framework.
This numerical experiment shows convergence of output esti-
mation errors and output tracking errors to small absolute val-
ues. Future work will explore extensions of this framework to
systems with constrained control inputs, discrete-time systems
with multi-rate inputs and outputs, and systems evolving on Lie
groups and their principal bundles. A combined stability analy-
sis that combines the proof of stability of uncertainty estimation
as well as output tracking using a single, combined Lyapunov
function, may also be explored in the future.
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