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Gravitational orbit–attitude coupling shows a noticeable influence on the motion of a rigid spacecraft in close

proximity to small solar system bodies. The gravity gradient moment changes the attitude of the spacecraft, which in

turn alters the total gravity force on the spacecraft and has an impact on the orbital motion. In this paper, the

polyhedron model of small bodies is adopted and a distributed point-mass model of the spacecraft is developed to

reflect this coupling phenomenonmore accurately. In particular, taking advantage of the gravitational orbit–attitude

coupling, a trajectory tracking scheme for a rigid body using only attitude control is proposed. By changing the

attitude of the spacecraft, the gravitational orbit–attitude coupling generates a control force to make the spacecraft

track the reference trajectory. This reference trajectory is generated based on a point-massmodel. Simulation results

in landing and orbiting around asteroid Bennu show the feasibility of this tracking approach. A significant

improvement is seen for the coupling-based controlled trajectory over natural motions. The tracking scheme reduces

the frequency of orbit control maneuvers and provides a redundant control in the event of thruster failures. This

approach can be used as a reference for future small-body missions.

Nomenclature

fBga = asteroid-fixed frame
fBgs = spacecraft body-fixed frame
e = position error in the asteroid-fixed frame
F = force due to gravity on the spacecraft in the asteroid-

fixed frame
G = gravity constant
h = integration step size
hc = attitude control step size
fIga = asteroid-centered inertial frame
Ja = moment of inertia of the asteroid
Js = moment of inertia of the spacecraft
M = gravity gradient moment on the spacecraft in the body-

fixed frame
m = total mass of the spacecraft
Q = attitude tracking error
R = rotation matrix from the body-fixed frame of the

spacecraft to the asteroid-fixed frame
Ra = rotation matrix from the asteroid-fixed frame to the

inertial frame
Rs = rotation matrix from the body-fixed frame of the

spacecraft to the inertial frame
u = control acceleration in the asteroid-fixed frame
V = translational velocity vector of the spacecraft in the

asteroid-fixed frame

v = translational velocity vector of the spacecraft in the
inertial frame

X = position vector of the spacecraft in the asteroid-fixed
frame

x = position vector of the spacecraft in the inertial frame
Γ = linear momentum of the spacecraft in the asteroid-fixed

frame
ν = translational velocity vector of the spacecraft in the

body-fixed frame
Πs = angular momentum of the spacecraft in the body-fixed

frame
σ = density of the asteroid
τc = control torque on the spacecraft
Φ = exponential coordinate of attitude
ϕc = control force on the spacecraft
Ω = angular velocity vector of the spacecraft in asteroid-

fixed frame
Ωa = angular velocity vector of the asteroid in the asteroid-

fixed frame
Ωs = angular velocity vector of the spacecraft in the body-

fixed frame of the spacecraft

I. Introduction

R ECENT interest in small solar system bodies, such as asteroids
and comets, has led to several spacecraft missions to these

bodies. These small bodies are considered as “remnant material”
from the formation of the solar system that may contain information
on the formation of Earth, the evolution of the solar system, and even
origins of life on Earth [1]. Moreover, the abundance of many
minerals on these small bodies has led to mission concepts for
resource utilization and mining operations targeting these bodies.
Several missions have been proposed to explore asteroids and
comets. One of the key issues that these mission designs need to
address is the dynamics and control of spacecraft in the proximity of
these small bodies.
Missions such as NEAR Shoemaker [2], Hayabusa [3], and

Rosetta [4,5] have shown that the dynamics environment near small
bodies is complex and chaotic. The strong perturbation caused by
irregular shape, nonhomogeneousmass distribution, and nonuniform

Received 11 March 2018; revision received 15 June 2018; accepted for
publication 18 June 2018; published online 27 September 2018. Copyright ©
2018 by the American Institute of Aeronautics and Astronautics, Inc. All
rights reserved. All requests for copying and permission to reprint should be
submitted to CCC at www.copyright.com; employ the ISSN 0731-5090
(print) or 1533-3884 (online) to initiate your request. See also AIAA Rights
and Permissions www.aiaa.org/randp.

*Ph.D. Candidate, School of Aerospace Engineering; lixiangy@bit.edu.cn.
†Postdoctoral Fellow,Department ofMechanical andAerospaceEngineering;

rwarier@syr.edu.
‡AssociateProfessor,Department ofMechanical andAerospaceEngineering;

aksanyal@syr.edu (Corresponding Author).
§Professor, School of Aerospace Engineering; Key Laboratory of

Dynamics and Control of Flight Vehicle; qiaodong@bit.edu.cn.

Article in Advance / 1

JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS

http://dx.doi.org/10.2514/1.G003653
www.copyright.com
www.copyright.com
www.copyright.com
www.aiaa.org/randp


rotation of small bodies makes proximity operations around these
bodies very different from those around planets and large moons.
Several studies have dealt with this issue in the past. Natural
dynamics such as equilibrium points [6–9], (quasi-)periodic orbits
[10,11], retrograde orbits [12], and terminator orbits [13,14] have
been investigated, mostly based on a point-mass model of the
spacecraft. Controlled motion such as hovering [15,16] and landing
[17] has been proposed. Those studies have helped improve our
understanding of the dynamic environment in the vicinity of small
bodies and facilitated mission design.
Besides the strongperturbation to orbitalmotiondue to irregularities

in shape and mass distribution, another key problem in motion near
small bodies is the coupling between the translational and rotational
motions of a spacecraft caused by the so-called gravitational orbit–
attitude coupling, which is induced by the weak gravity of the small
body acting on various parts of the spacecraft body. The gravity
gradient moment on the spacecraft changes the attitude of the
spacecraft, which in turn alters the total gravity force on the spacecraft
and has an impact on the orbital motion. The effect of the gravitational
coupling depends on the spacecraft mass distribution, orientation, and
distance to the small body. Gravitational orbit–attitude coupling and
related control problems have been investigated since the 1960s [18].
Sincarsin andHughes described the effect of orbit–attitude coupling by
the parameter ε � �r∕Rc�, where r is the characteristic spacecraft size
and Rc is the radius of the orbit [19]. For planetary missions such as
those in low Earth orbit, the radius of an orbit is much larger than the
size of a spacecraft. In this case, the coupling effect is weak. However,
for the small-body proximity missions, the radius of orbit is much
smaller, leading to a large value of ε; and the effect due to the
gravitational orbit–attitude coupling cannot be ignored. Therefore,
orbit–attitude coupling should be considered for accurate mission
designs near small bodies [20]. Lian et al. discussed the orbit–attitude
coupling effects and the controllability of spacecraft systems in a
central gravitational field [21]. Sanyal studied the coupled dynamics
and control problem in the context of a multibody system [22]. The
coupled dynamics of the spacecraft with an asteroidwasmentioned by
Scheeres in the design of the largegravity-tractor [23].Then,Wang and
Xu investigated the perturbation of the satellites’ inertia integrals
around a spheroid planet and indicated that the coupling was severe in
the case of a large spacecraft around a small asteroid [24]. The impact
of orbit–attitude coupling for spacecraft in a spherical harmonic
gravity fieldwas investigated, and a relativemotion estimation scheme
was proposed byMisra et al. [25]. Based on a similarmodel,Wang and
Xu analyzed the equilibria state of coupling motion [20,26]. Kikuchi
et al. derived the stability condition for the coupling motion on a sun-
synchronous orbit based on a linearizion of the motion [27]. On the
control of the motion, Wang and Xu discussed the feedback orbit–
attitude control for hovering using the noncanonical Hamiltonian
structure [28]. In the framework of geometric mechanics, Lee et al.
discussed a continuous finite-time control scheme used for body-fixed
hovering over an asteroid [29]. Misra et al. further applied the scheme
to soft landing on a tumbling asteroid [30]. Using visual odometry,
Kulumani et al. investigated the geometric control for landing
trajectories with a dumbbell spacecraft model [31]. Motivated by Lian
et al.’s work [21], Viswanathan et al. analyzed the controllability of
spacecraft with only attitude actuation and proved the drift vector field
of anunderactuated spacecraft near small bodieswasweaklypositively
Poisson stable,whichwas a novel idea for spacecraft control near small
bodies [32]. Furthermore, using gravitational orbit–attitude coupling,
Wang and Xu found that body-fixed hovering at a given attitude could
be achieved for a wide range of longitudes, with or without orbit
control [26].
This work extends prior research by showing the feasibility of

tracking a desired position trajectory to land on the surface of a small
body or orbit the small body using only attitude control and
gravitational orbit–attitude coupling. The main contributions of this
paper are listed as follows:
1) The polyhedron model of an asteroid is applied to investigate

the coupling motion.
2) A distributed point-mass model is developed to describe the

attitude motion of the spacecraft.

3) Controllability of the underactuated spacecraft with only attitude
control is verified with the polyhedron model of asteroid gravity.
4) A trajectory tracking scheme for the spacecraft in the vicinity of

the asteroid using only attitude actuation is proposed based on the
effect of gravitational orbit–attitude coupling.
This study can be considered as an application of gravitational

orbit–attitude coupling to control trajectories in the vicinity of small
bodies.
The polyhedral model has been proved to be a more accurate

description of the gravitational field of an irregular-shaped small body
than spherical harmonic expansions, especially near the surface of the
small body [33]. The polyhedral model has been applied to study
particle motions in the vicinity of an asteroid [6,8,11]. Here, we apply
the polyhedronmodel to the coupled orbit and attitude motion of the
spacecraft to increase accuracy. A distributed point-mass model
(DPMM) that uses several mass points to obtain the total mass
and moment of inertia of a spacecraft is built, which balances
the accuracy of the attitude motion of the spacecraft and the
computational efficiency during the full dynamics simulation. The
simulation shows that the coupled motion using the polyhedron
model shows distinct differences from the coupled motion in the
spherical harmonic model. The polyhedron model with the
distributed point-mass model can provide a more precise result for a
coupling motion analysis.
Next, based on the research of Viswanathan et al. [32], the

controllability of a spacecraft with only attitude actuation near
irregularly shaped small solar system bodies is verified numerically,
forwhich the Lie algebra rank condition for the polyhedronmodel is
derived. This means the spacecraft can control its rotational and
translational motions in the small-body proximity environment
with only an attitude control system due to the effect of gravitational
orbit–attitude coupling. A trajectory tracking scheme for the rigid
body with only attitude control is proposed. The desired position
trajectory that is tracked is generated by assuming a point-mass
model, which is an initial assumption made in several small-body
proximity missions [34,35]. The perturbation generated by the
gravitational orbit–attitude coupling is considered as the control
force to track the desired position trajectory. A nonlinear control
method is applied to design the virtual control thrust, and the best
attitude of the spacecraft is found for which the perturbation caused
by the coupling is closest to the designed virtual control thrust.
Finally, a finite-time stable attitude control is adopted to change the
attitude of the spacecraft and achieve the virtual thrust. The results
show that the proposed tracking scheme can keep the spacecraft
close to the reference trajectory without requiring any orbit control.
It increases the landing accuracy to 0.3 m and keeps the tracking
error less than 7 m in 11 days, which reduces the requirement of
orbit control, therefore saving on fuel consumption. It can also be
regarded as a redundant control scheme that can be used in the event
of thruster failures. Thismethod can provide a reference for onboard
control in future small-body missions.
The paper is organized as follows. Section II describes the

coordinate frames and dynamics. The polyhedron model of an
asteroid is introduced, and a distributed point-mass model is
developed for the spacecraft. The discretized equations of motion
are described. A trajectory tracking method based on gravitational
orbit–attitude coupling is investigated in Sec. III. The calculation of
controllability for the polyhedron model is derived. A nonlinear
control method is used to design virtual control thrust, followed by
the attitude optimization and a stable attitude control scheme.
In Sec. IV, the full dynamics simulations are presented based
on the polyhedron model and the DPMM. The feasibility of the
proposed trajectory tracking scheme is verified. The conclusions
are summarized in Sec. V.

II. Dynamics Model for the Full-Body Problem

A. Coordinate Frame Definition

The configuration space of spacecraft and asteroids is the special
Euclidean group SE�3�, which is the set of all translational and
rotational motions of a rigid body [36]. SE�3� is a Lie group and can
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be expressed as the semidirect product SE�3� ≃ R3
⋉SO�3�, where

R3 is the three-dimensional real Euclidean space of positions of the

mass center and SO�3� is the Lie group of orientations of the

rigid body.
To analyze the motion in the vicinity of a small body, three

coordinate frames are defined in this study: the asteroid-centered

inertial frame fIga, asteroid-fixed frame fBga, and spacecraft body-

fixed frame fBgs. The three axes of the asteroid-fixed frame are

aligned with the principal axes of inertia of the asteroid, in which the

X axis is the largest inertia axis and the Z axis is the smallest. The

inertial frame coincides with the asteroid-fixed frame at the initial

time and keeps the direction fixed in inertial space. The asteroid

attitude is represented by the rotation matrix Ra ∈ SO�3� that

transforms from the asteroid-fixed frame to the inertial frame. The

spacecraft body-fixed frame has a similar definition. The three

coordinate axes are along the principal axes of the spacecraft. Its

attitude is denoted by Rs ∈ SO�3�, which transforms from the body-

fixed frame to the inertial frame. Therefore, the rotation matrix

R � RT
aRs ∈ SO�3� transforms from the body-fixed frame to the

asteroid-fixed frame. The origin of the inertial frame coincides with

the origin of the asteroid-fixed frame. The position and velocity

vectors of the spacecraft in the inertial frame are defined by x ∈ R3

and v � _x ∈ R3, respectively. The angular velocity vector of the

asteroid is denoted by Ωa ∈ R3 in fBga, and the translational and

angular velocity vectors of the spacecraft are denoted by ν ∈ R3 and

Ωs ∈ R3 in fBgs, respectively. The coordinate frames and position

vectors are shown in Fig. 1.

B. Asteroid Dynamics

In this paper, the asteroid is assumed to be a rigid body that

moves around the sun with a known orbit. The relative motion

between the asteroid and the spacecraft is considered, and it is

described in the asteroid-centered inertial frame. This neglects the

translational motion of the asteroid and considers only its attitude

motion. The translational motion of the asteroid can be found in

prior work [25]. The rotational kinematics of the asteroid can be

expressed as

_Ra � Ra�Ωa�× (1)

where �⋅�×: R3 → so�3� denotes the cross-product operator

defined by

v× �
2
4 0 −v3 v2

v3 0 −v1
−v2 v1 0

3
5 (2)

Here, so�3� is the Lie algebra of SO�3�, which is represented
as a 3 × 3 skew-symmetric matrix.
Therefore, the attitude dynamics equation of the asteroid in the

asteroid-fixed frame is given by

Ja _Ωa � JaΩa ×Ωa �Ma (3)

whereMa ∈ R3 is the gravity gradient moment acting on the asteroid
(due to the sun and the spacecraft), and Ja is the moment of inertia of
the asteroid, which are both expressed in fBga. In this paper, we
assume the asteroid is far larger than the spacecraft and neglect the
moment due to the sun on the asteroid. Under this assumption,
Ma � 0.

C. Polyhedron Model of Asteroid

To reflect the irregular shape of the asteroid and get an accurate
gravitational potential model, the homogeneous polyhedron
model of an asteroid is used to describe its gravitational field
[37]. This method does not face issues due to truncation errors
(in series expansions) and keeps its convergence properties
outside the shape model. Therefore, it can describe the gravity
field of an asteroid more precisely than traditional spherical or
elliptical harmonic expansions [33]. Polyhedron models have
been used to investigate the precise particle dynamics around an
asteroid [8,11]. Here, we extend it to study the coupled orbit-
attitude motion of the rigid spacecraft.
The polyhedronmodel is defined by a series of vectors in the body-

fixed frame, which define vertices that compose the surface of the
asteroid. Three adjacent vertices i, j, and k in a counterclockwise
direction define a face and three edges. The potential of the
polyhedron model at point P with position vector X in fBga can be
transferred to the integral of its faces and corresponding edges. The
general formula can be expressed as

U�X� � 1

2
Gσ

X
e∈edges

Ler
T
eEere −

1

2
Gσ

X
f∈faces

ωfr
T
fFfrf (4)

whereG is the gravity constant; σ is the density of the asteroid; and re
and rf are the vectors from a point on edge e and face f to point P,
respectively. Le represents the line factor, and ωf represents the face
factor. Ee is the edge dyad, and Ff is the face dyad. The detailed
expressions can be found in Ref. [37].
Besides, the gravity force, Hessian matrix, and Laplacian of the

polyhedon are expressed as

∇U�X� � −Gσ
X

e∈edges
LeEere �Gσ

X
f∈faces

ωfFfrf (5)

∇∇U�X� � Gσ
X

e∈edges
LeEe −Gσ

X
f∈faces

ωfFf (6)

∇2U�X� � −Gσ
X

e∈edges
ωf (7)

The Laplacian can be used to determine whether the field point is
outside or inside the polyhedron. The sum equals −4π when point P
is inside, and it vanishes outside the polyhedron.

D. Distributed Point-Mass Model and Spacecraft Dynamics

To demonstrate the effects of gravitational orbit–attitude
coupling on a spacecraft, the shape and size of the spacecraft should
be considered. One of the challenges for a rigid spacecraft model is
the calculation of the gravity force and the moment from the
polyhedron model of the asteroid. Fahnestock and Scheeres
developed a method to obtain the mutual potential and the
derivatives of potential between two polyhedron models and
applied it to simulate the motion of binary asteroids [38]. But, the
algorithm required heavy computations. The dumbbell shape has

Fig. 1 Coordinate frames and position vectors.
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also been used to approximate a spacecraft [31,39]. But, those

models do not reflect the inertia moment of spacecraft correctly,

which impacted the accuracy of the attitude dynamics. In this paper,

instead of a polyhedron model or a dumbbell-shaped model of the

rigid spacecraft, a distributed point-mass model is developed, in

which severalmass points are used to obtain the totalmassm and the

moment of inertia Js of the spacecraft. The relative position of each
mass point is fixed in the body-fixed frame of the spacecraft. Here,

we assume a common spacecraft design like Hayabusa, which

contains two flat solar panels and one central body. The central body

is considered to be a cylinder with its spin axis alignedwith the body

Z axis. Two solar panels are considered as rectangular plates in

the XY plane passing through the X axis. The model of the rigid

spacecraft in the body-fixed frame is shown in Fig. 2.
Ten points with different mass values are selected for the cylinder,

forwhich two points ofmassmc1 are set along theZ axis and the other

eight pointswithmassmc2 are symmetrically located on theXZ plane

and the YZ plane. Four equal mass points with massmp1 are used to

approximate the solar panels. The distributed point-mass model is

marked in Fig. 2. It is assumed that themass of the cylinder ismc with

heightH and radius r, and themass of each panel ismp∕2with length
a and width b. The position and mass of each mass point in the

body-fixed frame are listed in Table 1.
According to the polyhedron model, the force due to the

gravitational potential field of an asteroid to the DPMM is the

summation of the forces on each mass point. Denote the position of

the center of the DPMM in fBga as X � RT
ax and the position vector

of each mass point in fBgs as pi�i � 1; 2; : : : ; 14�. The total gravity
force F ∈ R3 on the DPMM in fBga is

F�X;R� �
X14
i�1

mi∇U�X� Rpi� (8)

where mi is the mass for the ith mass point.
The gravity gradient momentM ∈ R3 in fBgs can be expressed as

M�X;R� �
X14
i�1

pi × Rtmi∇U�X � Rpi� (9)

The kinematics for the spacecraft is given by the following:

_g�g�ξ�∨; where �ξ�∨�
�
Ω×

s ν
0 0

�
∈se�3� and g�

�
Rs x
0 1

�
∈SE�3�

(10)

Here, se�3� denotes the Lie algebra of the Lie group and SE�3� is the
configuration, which is isomorphic to R6 as a vector space.
The state space for the motion of the spacecraft is TSE(3)

≈SE�3�⋉se�3�. The dynamics equations of motion for the spacecraft

evolves on TSE(3) as follows:

m_ν � mν × Ωs � RTF�X;R� � ϕc (11)

Js _Ωs � JsΩs ×Ωs �M�X;R� � τc (12)

where ϕc ∈ R3 is the control force, and τc ∈ R3 is the control torque

on the spacecraft, both in fBgs. The total mass of the DPMM is

m �
X14
i�1

mi

To summarize Eqs. (3) and (10–12), the full dynamics equation for

the distributed point-mass model can be written as

8>>>>>>>>><
>>>>>>>>>:

_V � Ωa × V � F�X;R�
m

� R
ϕc

m

Js _Ωs � JsΩs × Ωs �M�X;R� � τc

Ja _Ωa � JaΩa × Ωa

_X � Ωa × X � V

_R � R�Ω�× − �Ωa�×R

(13)

where V � RT
a _x ∈ R3 and Ω � RΩs ∈ R3 are the translational

velocity and the angular velocity of the spacecraft in fBga.

E. Discretization of Dynamics Models

Commonly used numerical integration methods, such as Runge–

Kutta algorithms, suffer from issues of poor accuracy and

maintaining state-space geometry while integrating continuous

dynamics on Lie groups [40]. Therefore, the dynamics of the asteroid

and the spacecraft are numerically integrated using a Lie group

variational integrator (LGVI) in this paper. Avariational integrator is

derived by discretizing the variational principles of mechanics that

lead to the equations of motion rather than discretizing the equations

of motion directly. The Lie group variational integrator has desirable

properties such as symplecticity, momentum preservation, and good

energy stability for long time periods. It also requires a lower number

of calculations per step, which makes it suitable for the polyhedron

method.
Lee et al. derived the discrete equation ofmotion in both the inertial

frame and the relative frame for two rigid bodies [40]. Like the

continuous dynamics equation, the force and moment on the asteroid

are neglected and only the force and moment on the spacecraft are

considered.
Define the attitude variablesFk ∈ SO�3�,Fsk ∈ SO�3�, andFak ∈

SO�3� as Rak�1
� RakFak , Rsk�1

� RskFsk , and Rk�1 � FT
akFkRk,

where Fk�1 � RkFskR
T
k . Rak , Rsk , and Rk represent the attitudes of

the asteroid and the spacecraft, and the relative attitude of the

spacecraft with respect to the asteroid, in discrete time. The discrete

equations of relative motion are obtained as

Fig. 2 Rigid spacecraft model and distributed point-mass model.

Table 1 Parameters for distributed point-mass model

Mass points Position Mass

1–2 [0, 0,�� ���
5

p
∕6�H] mc1

a

3–6 [�r, 0, ��H∕6�] mc2
b

7–10 [0,�r,��H∕6�] mc2

11–14 [�
�������������������������������������
�a2∕3� � r2 � ar

p
,��2 ���

3
p

∕12�b, 0] mp1
c

amc1 � mc∕4.
bmc2 � mc∕16.
cmp1 � mp∕4.
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8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

Xk�1 � FT
ak

�
Xk � h

Γk

m
−

h2

2 m
�F�Xk; Rk� − Rkϕck �

�

Γk�1 � FT
ak

�
Γk −

h

2
�F�Xk; Rk� − Rkϕck �

�
−
h

2

h
F�Xk�1; Rk�1� − Rk�1ϕck�1

i

Πsk�1
� FT

ak

�
Πsk −

h

2
�Mk � τck�

�
−
h

2
�Mk�1 � τck�1

�

Πak�1
� FT

akΠak

Rk�1 � FT
akFkRk

h

�
Πsk −

h

2
�Mk � τck �

�
×
� FskJds − JdsF

T
sk

hΠ×
ak � FakJda − JdaF

T
ak

(14)

where Γk � mVk is the linear momentum of the spacecraft in fBga,
Πsk � JsΩsk is the angular momentum of the spacecraft in fBgs,
Πak � JaΩsa is the angular momentum of the asteroid in fBga, and h
is the integration step size. Jds and Jda are the nonstandard moments

of inertia, which can be derived from

Jda �
1

2
tr�Ja�I3×3 − Ja (15)

Jds �
1

2
tr�Js�I3×3 − Js (16)

where Ja and Js are the inertias of the asteroid and the spacecraft in
their respective body-fixed frames.
The discrete time Hamiltonian map�
Rsk ;Xk;Πsk ;Γk;Rak ;Πak

�
→
�
Rsk�1

;Xk�1;Πsk�1
;Γk�1;Rak�1

;Πak�1

�

given by Eq. (14) provides a numerical integration scheme to
numerically simulate the full dynamics of the DPMM.

III. Trajectory Tracking Control Schemes
Using Only Attitude Actuation

Consider the dynamics given in Eq. (13), for which the
gravitational effect ofF�X;R� is given by Eq. (6) and is dependent on
the spacecraft attitude Rs. Due to the gravitational orbit–attitude
coupling, the translational motion of rigid spacecraft in the proximity
of a small solar system body can be controlled by attitude control
torques alone. The authors of Ref. [32] studied the nonlinear
controllability of the complete attitude and translational motion of a
rigid spacecraft near a small solar system body using only attitude
actuation. They used the results on weakly positively Poisson stable
drift vector fields along with the Lie algebra rank condition (LARC)
to conclude the controllability of the translational and rotational
motions of the spacecraft under certain initial conditions. Here, we
verify the controllability using the polyhedron model and propose a
neworbit trackingmethod. Instead of separate translational control, it
takes advantage of the gravitational orbit–attitude coupling and
controls the attitude of the spacecraft to generate a virtual control
force for trajectory tracking.
The overall scheme of the trajectory generation and tracking is as

follows.
1) In step 1, a trajectory designed from a point-massmodel without

the effect of gravitational orbit coupling is taken as the reference
trajectory. It provides a series of waypoints for tracking.
2) In step 2, the full dynamics is considered with the identical

position and translational velocity. Due to the effect of the
gravitational orbit–attitude coupling, the position trajectory under
full dynamics deviates from the reference trajectory. The error
between the reference and actual trajectories is calculated, and the

“virtual control thrust” that will track the reference trajectory is
designed.
3) In step 3, an optimal attitude of the spacecraft is found, forwhich

the perturbation caused by the gravitational orbit–attitude coupling is
closest to the desired virtual control thrust by numerically solving it
as an optimization problem.
4) In step 4, the spacecraft needs to track the desired attitude to

provide the gravitational orbit–attitude coupling-generated control
force required to track the reference trajectory. A finite-time attitude
tracking controller is designed to track the calculated optimal attitude
until the next optimal attitude state is generated.

Figure 3 shows the flowchart of the proposed scheme. In the

following subsections, we explain each step in detail.

A. Virtual Control Thrust Design

The reference trajectory is designed, based on the motion of a

spacecraft modeled as a point mass in the gravity of the asteroid

represented using the polyhedron model. Let xp and vp denote the

position and velocity, respectively, of the point mass represented in

Reference Point-Mass 
Trajectory

Build Distributed Point-
Mass Model 

DPMM Trajectory

Calculate the Error e 

Virtual Control 
Thrust Design

Attitude Optimization 

Attitude Control and 
Stabilization 

Generate Control Force 
via the Gravitational 

Orbit-Attitude Coupling

Controlled Full Body 
Dynamics 

Fig. 3 Flowchart of the trajectory tracking scheme using the

gravitational orbit–attitude coupling.
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the inertial frame fIga. The translational dynamics of the point-mass
model is given by

_xp � vp (17)

_vP � 1

m
Ra

�
fP�RT

axp�
�

(18)

where fp�RT
axp� is the thrust due to gravity on the point mass. From

the polyhedron model, we have fp�RT
axp� � m∇U�Xp� in Eq. (5),

where Xp equals RT
axp. Note that the translational dynamics of the

point mass is not dependent on the attitude of the spacecraft. Let xd
and vd denote the position and velocity of the spacecraft with the
DPMM in the coordinate frame fIga. The translational dynamics of
the DPMM can be rewritten to be

_xd � vd (19)

_vd � 1

m
Ra

�
F�RT

axd; R�
�
� Rauvirtual (20)

where uvirtual is the virtual control thrust represented in frame fBga.
Let the position tracking error and velocity tracking error be defined
as ex � xp − xd and ev � vp − vd respectively. The error dynamics

can be expressed as

_ex � ev (21)

_ev �
1

m
Ra

�
F�Xp; R� − fp�Xd�

�
� Rauvirtual (22)

Note that the error dynamics is complex and not necessarily an
affine system in terms of the real control variableRs. Additionally, an
analytical expression of F�X;R� from the polyhedron model of the
gravity would be too complicated. Instead, we design the virtual
controluvirtual and reorient the spacecraft to achieve thevirtual control
thrust through gravitational orbit–attitude coupling:

uvirtual � RT
a

h
−Kx tanh�Kxex� − αv tanh�βvev�

i
−

1

m

�
F�Xp; R� − fp�Xd�

�
(23)

where Kx is the positive definite control matrix, and αv and βv are
positive control gains. Their values can be chosen by the magnitude
of coupling. Function tanh�⋅� is operated componentwise on the
vector. The stability property of the control law is shown in the
following theorem.
Theorem III.1: Consider the error dynamics of Eqs. (21) and (22).

Under the feedback control law for uvirtual given in Eq. (23), the
feedback translational tracking error dynamics givenbyEqs. (21) and
(22) is stabilized to �ex; ev� � �0; 0� asymptotically.
Proof: The stability can be proved using the following Lyapunov

function:

Vtran � loge�cosh�Kxex�� �
1

2
eTv ev � V�ex; ev� (24)

where the loge�⋅� and cosh�⋅� are operated componentwise. Take the
derivate of Vtran with respect to t to get

d

dt
V�ex; ev� � �Kx _ex�T tanhKxex � _eTv ev

� eTv

h
Kx tanhKxex − Kx tanhKxex − αv tanh�βvev�

i
� eTv

h
−αv tanh�βvev�

i
(25)

Then, it has

_Vtran � −αveTv tanh�βvev� ≤ 0

if αv > 0 and βv > 0. Thereafter, theorem 8.4 from Ref. [41] can be

invoked to conclude that ev → 0, and thereafter ex → 0 as t → ∞.
As explained earlier, we assume no thrust control for the

spacecraft, and the virtual control designed in Eq. (23) cannot be

applied directly. The control effort uvirtual will be achieved using the
gravitational orbit–attitude coupling in the following part.

B. Controllability Analysis and Attitude Optimization

The virtual control given by Eq. (23) should be generated by

changing the attitude of the spacecraft using gravitational orbit–

attitude coupling. The spacecraft is an underactuated system if it is

only controlled by attitude controllers. The system is shown to be

controllable if its drift vector field is weakly positively Poisson stable

and the system satisfies the Lie algebra rank condition [21].
The controllability of the spacecraft in the gravitational field of

polyhedron model is derived at first. Assume that the attitude

actuation can control all three rotational degrees of freedombi, i � 1,
2, 3. The spacecraft dynamics with only attitude actuation in the

control affine form can be presented as follows:

_φ � fc�φ� �
X3
i�1

uaigci�φ� (26)

fc �

0
BBBB@

Rs�J−1s Πs�×
Rs�J−1s Πs�×Π×

s
RaΓ
m

RaF�X;R�

1
CCCCA; gci �

0
BBBB@

0

Rsb
×
i

0

0

1
CCCCA; i � 1; 2; 3 (27)

The configuration manifold is Q � SE�3�, and a point on the

cotangent bundleφ ∈ T	Q is represented asφ � �Rs; RsΠ×
s ; x; RaΓ�.

Let vector fields Y and Z at φ be written as

Y�φ� �
�
Rsζ

×; Rs�ζ×Π×
s � η×�; λ

�
;

Z�φ� �
�
Rsa

×; Rs�a×Π×
s � d×�; c

�
(28)

where ζ, η, λ, and c are all functions of the statesφ. The flows of Y and

Z can be found to be

ψY
t �φ� �

�
Rse

tζ× ; Rse
tζ×�Π×

s � tη×�; x� tλ
�

(29)

ψZ
t �φ� �

�
Rse

ta× ; Rse
ta×�Π×

s � td×�; x� tc
�

(30)

The Lie bracket �Y; Z� can be computed as

�Y; Z��φ� � d

dt

				
0

�
Z ∘ ψY

t �φ� − Y ∘ ψZ
t �φ�

�
(31)

Viswanathan et al. [32] proved that the drift vector field of an

underactuated spacecraft near small bodies is weakly positively

Poisson stable. Here, the controllability based on the polyhedron

asteroid model and the DPMM for the spacecraft are derived.

Let Y � fc and Z � gc with the associated terms

ζ � J−1s Πs; η � 0; λ �
0
@ RaΓ

m

RaF�X;R�

1
A;

a � 0; d � bi; c �
 
0

0

!

The Lie brackets for the underactuated system are computed as

follows:
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fci ≜ �fc; gci � �

0
BBB@

−Rs�J−1s bi�×
−Rs�J−1s bi�×Π×

s

0

0

1
CCCA; i � 1; 2; 3

and

Fi ≜ �fc; fci � �

0
BBBB@

−Rs�J−1s Πs × J−1s bi�×
−Rs�J−1s Πs × J−1s bi�×Π×

s

0

Fi;4

1
CCCCA; i � 1; 2; 3

According to the previous result, the LARC is satisfied if the three
vectors Fi;4, i � 1, 2, 3 are nonzero, where

Fi;4 �
d

dt

				
0

c ∘ ψfc
t −

d

dt

				
0

λ ∘ ψfci
t � −

d

dt

				
0

λ ∘ ψfci
t

and

λ � GρRa

X14
w�1



−
X

e∈edges
LeEere �

X
f∈faces

ωfFfrf

�
m�w�

According to the Lie bracket formula, Fi;4 is evaluated as

Fi;4 � GρRa

X14
w�1


 X
e∈edges

LeEeRq
×
w �

X
f∈faces

ωfFfRq
×
w

�
m�w�J−1s bi

�GρRa

X14
w�1


 X
e∈edges

∂Le

∂t

				
t�0

Eere �
X

f∈faces

∂ωf

∂t

				
t�0

Ffrf

�
m�w�

(32)

The numerical simulation in Sec. IV shows that the three vectors
F1;4,F2;4, andF3;4 are nonzero and linearly independent in thevicinity
of the asteroid. In that case, with the drift vector field being weakly
positively Poisson stable, the spacecraft is controllable using only

attitude control in thevicinity of the irregular asteroid,whichmeans the
spacecraft can change its attitude to generate the control force using
gravitational orbit–attitude coupling.
Note the initial state of spacecraft as X0,Φ0. Here, the attitudes of

the spacecraft are given by exponential coordinates

Φ � �Φ1;Φ2;Φ3�T; Φi ∈ �−π; π�; i � 1; 2; 3

to avoid the singularity. The transformation between Φ and the
rotation matrix Rs is shown as

Rs � exp�Φ×� � I3×3 �
sin kΦk
kΦk Φ× � 1 − cos kΦk

kΦk2 �Φ×�2 (33)

The gravitational force to the DPMM is

F0 � F�Ra�t�; Rs�Φ0�; X0�

The optimal attitude and the corresponding gravitational force are
noted as Φ	 and

F	
1 � F�Ra�t�; Rs�Φ	�; X0�

which should satisfy the equation

F	
1 − F0 � uvirtual

As the magnitude of the coupling effect is limited and varies with

position, the control acceleration may not be satisfied completely.

In that case, the attitude that minimizes the error between the
actual control acceleration û � F1 − F0 and the desired control
acceleration uvirtual is determined as the optimal attitudeΦ	. The cost
index of the optimal problem is described as

minûJ�Φ� � kû − uvirtualk (34)

By algebraic optimization methods such as conjugate gradient
algorithms, the optimal attitude can be found. The next part describes
the attitude control scheme.

C. Finite-Time Stable Attitude Tracking Control

The attitude control and stabilization enact the virtual thrust by
reorienting the attitude of the spacecraft from the initial attitudeΦ0 to
the optimal attitude Φ	. There are several control methods. Here, a
finite-time state feedback tracking control scheme is applied [42,43].
Denote the desired attitude as Rd�Φ	� and the desired angular
velocity as Ωd. The attitude tracking error is Q � RT

dRs. The
kinematics for the tracking error is

_Q � Q�ω�× (35)

where ω � Ωs −QTΩd is the error in angular velocity in fBgs. The
dynamics for the tracking errors in the angular velocity is

Js _ω � τc � Js

�
ω×QTΩd −QT _Ωd

�
− �ω�QTΩd�×Js

�
ω�QTΩd

�
�M�X;R� (36)

The following two lemmas are used to derive the feedback control
torque τc.
Lemma III.1: Let α and β be nonnegative real numbers, and let

p ∈ �1; 2�. Then,

α�1∕p� � β�1∕p� ≥ �α� β��1∕p� (37)

This inequality is strict if both a and b are nonzero.
Lemma III.2: Let hK; I −Qi � trace�K − KQ� denote a function

thatmapsSO�3� toR, whereK � diag�k1; k2; k3� ∈ R3 is a diagonal
gain matrix with k1 > k2 > k3 ≥ 1. Define

sK�Q� �
X3
i�1

ki�ei�×�QTei� (38)

such that

d

dt
hK; I −Qi � ωTsK�Q�

which makes hK; I −Qi a Morse function defined on SO�3�. Here,
e1 � � 1 0 0 �T , e2 � � 0 1 0 �T , and e3 � � 0 0 1 �T are the
standard basis vectors.
Let S ⊂ SO�3� be a closed subset containing the identity in its

interior, defined as

S � fQ ∈ SO�3�:Qii ≥ 0 and QijQji ≤ 0;∀ i; j ∈ f1;2;3g; i ≠ jg

Then, for Q ∈ S, one obtains

sK�Q�TsK�Q� ≥ hK; I −Qi (39)

The finite-time attitude tracking control scheme is given as
follows:
Theorem III.2: sK�Q� Consider the attitude dynamics of Eq. (36)

with in Eq. (38). Define

zK�Q� � sK�Q�
�sTK�Q�sK�Q��1–1∕p (40)
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and

w�Q;ω� � d

dt
sK�Q� �

X3
i�1

kiei × �ω ×QTei� (41)

where p ∈ �1; 2�. Furthermore, let L be a positive definite control
gain matrix such that L − Js is positive semidefinite, let kp > 1, and
define κ such that

κp � σL;min

σJs;max

> 0

The feedback control law for τc is given by

τc � Js



QT _Ωd −

κH�sK�Q��
�sTK�Q�sK�Q��1–1∕p w�Q;ω�

�

� �QTΩd�×Js
�
QTΩd − κzK�Q�

�
� κJs

�
zK�Q� ×QTΩd

�
� κJs�ω�QTΩd� × zK�Q� − kpsK�Q�

−
LΨ�Q;ω�

�Ψ�Q;ω�TLΨ�Q;ω��1–1∕p −M�X;R� (42)

where

Ψ�Q;ω� � ω� κzK�Q� (43)

and

H�x� � I −
2�1–1∕p�

xTx
xxT (44)

Then, the feedback attitude tracking error dynamics given by
Eq. (36) is stabilized to �Q;ω� � �I; 0� in finite time. The proof of the
finite-time attitude tracking control scheme and its stability were
given by Bohn and Sanyal [42], and it is omitted here for brevity.
At each instant, the error between the DPMM trajectory and the

reference trajectory at the waypoint is calculated and the virtual
control thrust is generated. The finite-time stable attitude tracking
control will drive the attitude of the spacecraft to the optimal
reference attitude in a stable manner until the spacecraft reaches the
next waypoint and updates the desired attitude. The time interval
between successive waypoints is denoted as hc, which is greater than
the integration step size h.

IV. Numerical Validation

In this section, the full dynamics simulation of the spacecraft
close to an asteroid is shown. Asteroid 101955 Bennu, which is the
target for the ongoing Origins Spectral Interpretation Resource
Identification Security Regolith Explorer (OSIRIS-REx) mission, is
considered in this simulation. For a small-body proximity mission,
the spacecraft trajectory in proximity to the body is usually designed
based on the point-mass (PM) model, as can be found in various
studies and actualmission designs [34,35].Given this background for
prior and current missions, we choose a point-mass trajectory as the
reference trajectory. First, simulations showing the gravitational
coupling are presented based on the polyhedron model and the
distributed point-mass model, and then the results are compared with
the point-mass model. The corresponding motions in the spherical
harmonic gravitational field of the asteroid are also developed as a
contrast. Two cases are discussed around the asteroid: the ballistic
landing trajectory from an analogous equilibrium point of the
asteroid, and the elliptic orbit around the asteroid. Second, the
proposed tracking method using only attitude actuation is shown in
the two cases to verify its feasibility.

A. Effect of Gravitational Orbit–Attitude Coupling

The polyhedron gravity model and spherical harmonic expansion
gravity model of Bennu are used in this simulation. The polyhedron

model is obtained based on observations in 1999 and 2005 [44].

Table 2 shows the parameters for Bennu. The spherical harmonic

expansion up to 8 × 8 is obtained based on the polyhedron model

[44–46]. The assumed parameters of the spacecraft are given in

Table 3. Here, we focus on the motion close to the surface, where the

irregular gravitational field of the asteroid dominates the motion.

Therefore, we do not take the solar radiation pressure and third-body

perturbation into consideration, and the control force and torque are

set as ϕc � 0 and τc � 0.

1. Case 1: Landing Trajectory

The landing trajectory starts from the quasi-periodic orbit around

the dynamic equilibrium point of the asteroid. Due to the irregular

shape of the asteroid, the asteroid has an analogous equilibrium point,

as in the circular restricted three-body problem (CRTBP) [8]. There

are also similar periodic orbits around the equilibrium point, as well

as associated invariantmanifolds. The spacecraft on the periodic orbit

can transfer along the unstable manifolds with a small perturbation

and gradually land on the surface of the asteroid in several hours [47].

Here, the periodic orbit around the equilibrium point close toX axis is

chosen. The designed landing site is a latitude of 0.586° and a

longitude of 40.090° (the definition of positive longitude starts from

the X axis counterclockwise).
The numerical simulation is carried out with an integration step size

ofh � 0.5 s. The Laplacian in Eq. (7) is used to determine the landing

state for polyhedron model. The initial relative position and velocity

are �316.370 −13.602 −1.105 � m and �1.168 137.965 6.036 �×
10−3 m∕s in fBga. The initial attitude of the spacecraft is [0, 0, 1] in
exponential coordinates with zero angular velocity. Figure 4 shows the

trajectories using different gravity models. As shown in Fig. 4a, due to

the gravitational orbit–attitude coupling, the trajectory of the DPPM

gradually shifts from the PM trajectory and lands on a different site.

Taking the PM trajectory in the polyhedron model as a reference, the

position deviations of the other three models with time are shown in

Fig. 4b. It is found that both the DPMM trajectory and the PM

trajectory using the spherical harmonic model are different from those

obtained using the polyhedron model. As stated in previous literature

[37], the spherical harmonicmodel is not guaranteed to converge inside

the Brillouin sphere, which causes large gravity errors near the surface

of the asteroid. The inaccuracy of the gravitational field leads to a 6 h

difference in landing time for both the DPMM trajectory and the

PM trajectory. The final position difference of the DPMM trajectory is

also up to 33.1 m between the spherical harmonic model and the

polyhedron model.

Table 2 Parameters for asteroid 101955 Bennu [44,46]

Parameter Value

Density 1.260 × 103 kg∕m3

Size 565 × 535 × 508 m
Volume 0.0623 km3

Moment of inertia diag�1.8235; 1.8946; 2.0453� × 109 kg	km2

Rotation period 4.297 h

Table 3 Parameters for spacecraft

Parameter Value

Total mass 500 kg
Mass of central part 400 kg
Mass of solar panels 100 kg
Moment of inertia diag�0.333; 0.583; 0.318� × 103 kg	m2

Height of cylinder 3 m
Radius of cylinder 0.5 m
Length of solar panel 2 m
Width of solar panel 1 m
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Furthermore, we change the initial rotational states for the DPMM
in the simulation, as listed in Table 4. A total of 10 different initial

attitudes and angular velocities are chosen, namely, T1–T10.
The angular velocities are expressed in the body-fixed frame, and the

attitudes of the spacecraft are given by exponential coordinates.

Figure 5 illustrates landing trajectories starting from the same initial
position and translational velocity but different initial attitudes and

angular velocities. As can be seen, due to the gravitational orbit–
attitude coupling, the trajectories of the DPMM shift from the point-
mass trajectory. By choosing different initial attitudes, the spacecraft
with the same translational state will land on different areas of the
asteroid. Some of the initial states may fly far away from the desired
landing site, as shown in Fig. 5b. Figure 6 shows the distribution of
actual landing sites by longitude and latitude for these different initial
notational motion states. The maximum landing error is up to 20° in
longitude and 1° in latitude, which is about 100 m in distance. The
spacecraft will miss the intended landing site and make contact with
the asteroid surface at different sites, which may adversely affect its
scientific mission objectives. The coupling also changes the attitude
of the spacecraft from its initial state, which may also cause an
undesired landing attitude, resulting in possible damage to the
spacecraft.

2. Case 2: Elliptic Orbit

In the second case, the initial trajectory starts from an elliptic orbit
with an eccentricity of e � 0.15 and a semimajor axis of
a � 0.36 km. The initial conditions are shown in Table 5. The
trajectories are integrated for 11 days with an integration step size
of h � 1 s.

Fig. 4 Comparison between different models for landing trajectory.

Fig. 5 Landing trajectories of the DPMM for different initial conditions.

Table 4 Initial rotational states of the spacecraft for landing

State Attitude Φ, rad Angular velocity Ωs, rad∕s
T1 [0 0 −1] [0 0 0]
T2 [0 0 0] [0 0 0]
T3 [−0.839 0.225 −1.482] [0 0 0]
T4 �−1.597 −0.542 −1.112 � [0 0 0]
T5 [1.114 −0.299 −1.413] [0 0 0]
T6 �−1.209 −1.209 −1.209 � � 1 0.2 0.1 � × 10−3

T7 �−0.541 −0.184 −1.404 � � 1 0.2 0.1 � × 10−3

T8 [−0.598 0.079 −1.785] � 1 0.2 0.1 � × 10−3

T9 �−1.749 −0.230 −1.399 � � 1 0.2 0.1 � × 10−3

T10 [−1.207 −0.500 2.091] � 1 0.2 0.1 � × 10−3
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Figure 7a shows the orbits in different models at the last day in the

asteroid-fixed frame, and Fig. 7b shows the relative position errors for
different models with PM orbits in the polyhedron model. Similar to

landing trajectories, the gravitational orbit–attitude coupling causes

the deviation of the DPMM orbit from the PM orbit. The position

error induced by the coupling gradually increases with time. The

maximum error is more than 100 m in the polyhedron model. The

error also exists in the spherical harmonic model. Besides, the error

between the DPMM orbit in the polyhedron model and that in the

spherical harmonic model is up to 0.9 km, which reflects the effect of

the accuracy of the gravitational field model on the coupled orbit and
attitude motion of the spacecraft.

B. Tracking with Attitude Actuation

The aforementioned simulations of the natural full dynamics show
that the gravitational orbit–attitude coupling causes the actual
trajectory of a rigid-body spacecraft to deviate from the desired point-
mass trajectory, and therefore orbit control is necessary. Instead of
implementing the orbit correction by propulsive thrust force, the
proposed trajectory tracking method uses only attitude control for
trajectory tracking.
The numerical results of the controllability analysis using the

polyhedron model are shown in Fig. 8. The magnitudes of vectors
F1;4, F2;4, and F3;4 along the landing trajectory T2 are nonzero and
linearly independent for the polyhedron model of the asteroid and
the DPMM of the spacecraft. The Lie brackets Fi;4 along other
trajectories show similar behaviors. In this case, the spacecraft is
controllable using only attitude control in the vicinity of the irregular
asteroid. Besides, it is found that larger Fi;4 appear when the
trajectory is close to the surface, which means the controllability
increases with smaller orbit sizes. Moreover, the Lie brackets along
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Fig. 6 Distribution of the landing sites for the DPMM and the point-

mass model.

Table 5 Initial translational and rotational states of the

spacecraft for the elliptic orbit

Initial states Value

Relative position X, m [108.207 −284.253 −173.180]
Relative velocity V, m∕s � 6.014 −65.264 110.881 � × 10−3

Attitude Φ, rad [0 0 0]
Angular velocity Ωs, rad∕s � 0.1 0 0.2 � × 10−3

Fig. 7 Comparison between different models for elliptic orbits.
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the trajectory for a uniform spherical asteroid are much smaller than

in the polyhedron model (on the order of 10−4 in magnitude). The

irregular shape of the asteroid significantly increases the effect of

gravitational orbit–attitude coupling.
The tracking scheme is applied to track the landing trajectory in

case 1 and the elliptic orbit in case 2, respectively. The same

spacecraft parameters and initial states of translational motion are

used. The maximum perturbation due to the gravitational orbit–

attitude coupling around Bennu is calculated about 1.7 × 10−6 N.
Therefore, the gain values for trajectory tracking are selected as

Kx � 1.4 × 10−3; αv � 1 × 10−6; βv � 1

For the landing trajectory, the initial attitude is selected to be

identical to T2 in Table 4. The time interval between waypoints hc is
chosen as 100 s. Figure 9 shows the results in the asteroid-fixed

frame. In contrast, the natural DPMM trajectory is also plotted. The

position errors and attitudes of the spacecraft are shown in Figs. 10

and 11, respectively. The landing trajectory using the control scheme

in Sec. IV increases the landing accuracy to less than 0.3 m, which is

much better than the natural motion. Figure 12 shows the controlled

landing trajectory in the inertial frame and the attitude of the
spacecraft along the trajectory at a few waypoints. As shown in
Figs. 11 and 12, the attitude of the spacecraft changes over time to
match the desired control force and its direction.
The initial attitude for the elliptic orbit is the same as in Table 5.

The time interval between waypoints hc is chosen as 500 s. The total
time is 11 days. Figure 13 shows the orbits in the last day in the
asteroid-fixed frame and the inertial frame, respectively. Compared
with the natural motion, the orbit obtained using the control scheme
in Sec. III is much closer to the reference trajectory. The maximum
position error is about 7 m, as shown in Fig. 13c. Although the error
slowly increases due to the limited control ability provided by the
gravitational orbit–attitude coupling, it can reduce the frequency of
orbit correction, which in turns saves fuel and prolongs the mission
duration.

C. Discussion

The preceding simulations show that the polyhedron model of the
asteroid and the distributed point-mass model can better reflect the
coupled orbit–attitude motion of the spacecraft in the vicinity of an
irregular-shaped asteroid. They can provide more accurate analyses
for couple trajectory design. Due to the gravitational orbit–attitude
coupling, the rigid-body spacecraft trajectory will deviate from the
point-mass reference trajectory. The trajectory tracking schemegiven
here, with only attitude control, can be used for the rigid-body
trajectory design in small-body exploration missions. By using the
gravitational orbit–attitude coupling itself, the spacecraft can track a
desired point-mass landing trajectory without thrust control. This is
due to the fact that the gravitational orbit–attitude coupling effect
leading to the orbital position error between the point-mass and rigid
body trajectories is of the same order of magnitude as the amount of
force that can be produced from this coupling. For the elliptic orbit,
the spacecraft can maintain near the reference orbit in several days.
The same approach can be employed to track other desired
trajectories, which require a similar amount of control effort. Besides,
the attitude actuation is often regenerative. Therefore, the proposed
tracking scheme is more fuel efficient than the direct translational
control. It can also provide a backup control scheme when thruster
failure happens. Although the asteroid shown in this simulation is a
major-axis spinner, the tracking scheme given here can also be
applied to a tumbling asteroid. This is because the full dynamics
considered in designing the control law has no restriction on the
angular velocity Ω. The performance of the tracking scheme is
closely related to the controllability analysis, for which the relation
with various orbital elements and different shapes of asteroids will be
a direction for future studies.

Fig. 9 Tracking landing trajectory in the asteroid-fixed frame.
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Fig. 12 Controlled landing trajectory in the inertial frame.

Fig. 13 Controlled elliptic trajectory and position error.
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V. Conclusions

In this paper, a trajectory tracking scheme for rigid bodies with
only attitude control is proposed for small-body missions using
gravitational orbit–attitude coupling. The effect of gravitational
orbit–attitude coupling is investigated based on a polyhedron model
of the small body and a distributed point-mass model of the
spacecraft, which shows higher accuracy than the spherical harmonic
gravity model. The trajectory tracking method uses only an attitude
control system, but no thrust control force input is applied to the
spacecraft. The attitude of the spacecraft is controlled to generate
a perturbation force induced by the gravitational orbit–attitude
coupling, which is close to the designed virtual control thrust. This
force drives the trajectory of the spacecraft to track a series of
waypoints on a reference trajectory that is designed based on a point-
mass trajectory. Simulation results show that the proposed tracking
scheme can decrease the position trajectory error using the coupling
effect without employing any translational control. It increases the
landing accuracy to 0.3 m and keeps the tracking error less than 7 m
over a period of 11 days. The tracking method does not require orbit
control, therefore saving on fuel consumption. It also provides a
redundant control scheme that can be used in the event of thruster
failures. The approach outlined here can provide a reference for
onboard control in future small-body missions.
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