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a b s t r a c t

Stable estimation of rigid body pose and velocities from noisy measurements, without any knowledge of
the dynamicsmodel, is treated using the Lagrange–d’Alembert principle fromvariationalmechanics.With
body-fixed vision and inertial sensor measurements, a Lagrangian is obtained as the difference between
a kinetic energy-like term that is quadratic in velocity estimation error and the sum of two artificial
potential functions; one obtained from a generalization of Wahba’s function for attitude estimation and
another which is quadratic in the position estimate error. An additional dissipation term that is linear
in the velocity estimation error is introduced, and the Lagrange–d’Alembert principle is applied to the
Lagrangianwith this dissipation. A Lyapunov analysis shows that the state estimation scheme so obtained
provides stable asymptotic convergence of state estimates to actual states in the absence of measurement
noise, with an almost global domain of attraction. This estimation scheme is discretized for computer
implementation using discrete variational mechanics, as a first order Lie group variational integrator.
The discrete estimation scheme can also estimate velocities from such onboard sensor measurements.
Moreover, all states can be estimated during time periods when measurements of only two inertial
vectors, the angular velocity vector, and one feature point position vector are available in body frame. In
the presence of bounded measurement noise in the vector measurements, numerical simulations show
that the estimated states converge to a bounded neighborhood of the true states.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Estimation of coupled translational and rotational motion is
indispensable for operations of spacecraft, unmanned aerial and
underwater vehicles. Autonomous state estimation of a rigid body
based on inertial vector measurement and visual feedback from
stationary landmarks (Karpenko, Konovalenko, Miller, Miller, &
Nikolaev, 2015;Miller &Miller, 2015), in the absence of a dynamics
model for the rigid body, is analyzed here. The estimation scheme
proposed here can also be applied to relative state estimation with
respect to moving objects (Misra, Izadi, Sanyal, & Scheeres, 2015).
This estimation scheme can enhance the autonomy and reliability
of unmanned vehicles in uncertain GPS-denied environments.
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recommended for publication in revised form by Associate Editor Andrey V. Savkin
under the direction of Editor Ian R. Petersen.
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Salient features of this estimation scheme are (1) use of onboard
optical and inertial sensors, with or without rate gyros, for
autonomous navigation; (2) robustness to uncertainties and lack
of knowledge of dynamics; (3) low computational complexity for
easy implementationwith onboard processors; (4) proven stability
with large domain of attraction for state estimation errors; and
(5) versatile enough to estimate motion with respect to stationary
aswell asmoving objects. Robust state estimation of rigid bodies in
the absence of complete knowledge of their dynamics, is required
for their safe, reliable, and autonomous operations in poorly known
conditions. In practice, the dynamics of a vehicle may not be
perfectly known, especially when the vehicle is under the action
of poorly known forces and moments. The scheme proposed here
has a single, stable algorithm for the coupled translational and
rotational motion of rigid bodies using onboard optical and inertial
sensors. This avoids the need for measurements from external
sources, likeGPS,whichmaynot be available in indoor, underwater
or cluttered environments (Amelin & Miller, 2014; Leishman,
McLain, & Beard, 2014; Miller & Miller, 2014).

Attitude estimators using unit quaternions for attitude rep-
resentation may be unstable in the sense of Lyapunov, unless
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they identify antipodal quaternions with a single attitude. This
is also the case for attitude control schemes based on continu-
ous feedback of unit quaternions, as shown in Bayadi and Ba-
navar (2014); Chaturvedi, Sanyal, andMcClamroch (2011); Sanyal,
Fosbury, Chaturvedi, and Bernstein (2009). One adverse con-
sequence of these unstable estimation and control schemes is
that they end up taking longer to converge compared with sta-
ble schemes under similar initial conditions and initial tran-
sient behavior. Continuous-time attitude observers and filtering
schemes on SO(3) and SE(3) have been reported in, e.g., Bonnabel,
Martin, and Rouchon (2009); Khosravian, Trumpf, Mahony, and
Hamel (2015); Khosravian, Trumpf, Mahony, and Lageman (2015);
Mahony, Hamel, and Pflimlin (2008); Maithripala, Berg, and
Dayawansa (2004); Markley (2006); Rehbinder and Ghosh (2003);
Sanyal, Lee, Leok, and McClamroch (2008); Vasconcelos, Cunha,
Silvestre, and Oliveira (2010); Vasconcelos, Silvestre, and Oliveira
(2008), including recent stochastic filtering approaches (Barrau &
Bonnabel, 2015). These estimators do not suffer from kinematic
singularities like estimators using coordinate descriptions of atti-
tude, and they do not suffer fromunwinding as they do not use unit
quaternions. The maximum likelihood (minimum energy) filter-
ing method of Mortensen (1968) was recently applied to attitude
estimation, resulting in a nonlinear attitude estimation scheme
that seeks to minimize the stored ‘‘energy’’ in measurement er-
rors (Aguiar & Hespanha, 2006; Zamani, 2013; Zamani, Trumpf,
& Mahony, 2013). This scheme is obtained by applying Hamil-
ton–Jacobi–Bellman (HJB) theory (Kirk, 1971) to the state space of
attitudemotion (Zamani, 2013). Since the HJB equation can only be
approximately solved with increasingly unwieldy expressions for
higher order approximations, the resulting filter is only ‘‘near opti-
mal’’ up to second order. Unlike approximate or ‘‘near optimal’’ fil-
tering schemes that are not provably stable, the estimation scheme
obtained here can be solved exactly and is almost globally asymp-
totically stable. Moreover, unlike filters based on Kalman filtering,
the estimator proposed here does not presume any knowledge of
the statistics of the initial state estimate or the sensor noise. Indeed,
for vector measurements using optical sensors with limited field-
of-view, the probability distribution of measurement noise needs
to have compact support, unlike additive Gaussian noise processes
that are commonly used.

The variational attitude estimator recently appeared in Izadi
and Sanyal (2014); Izadi, Sanyal, Barany, and Viswanathan (2015);
Izadi, Sanyal, Samiei, and Viswanathan (2015), where it was
shown to be almost globally asymptotically stable. Advantages
of this scheme over some commonly used competing schemes
are reported in Izadi, Samiei, Sanyal, and Kumar (2015). This
paper extends the variational estimation framework to coupled
rotational (attitude) and translational motion, as exhibited by
maneuvering vehicles like small UAVs. In such applications,
designing separate state estimators for the translational and
rotational motions may not be effective and may lead to poor
navigation. For navigation and tracking the motion of such
vehicles, the approach proposed here for robust and stable
estimation of the coupled translational and rotational motion will
be more effective than de-coupled estimation of translational
and rotational motion states. Moreover, like other vision-inertial
navigation schemes (Shen, Mulgaonkar, Michael, & Kumar, 2013;
Shen, Mulgaonkar, Michael, & Kumar, 2013), the estimation
schemeproposed here does not rely onGPS. However, unlikemany
other vision-inertial estimation schemes, the estimation scheme
proposed here can be implemented without any direct velocity
measurements. Since rate gyros are usually corrupted by high
noise content and bias (Goodarzi, Lee, & Lee, 2013), such a velocity
measurement-free scheme can result in fault tolerance in the case
of faults with rate gyros. Additionally, this estimation scheme
can be extended to relative pose estimation between vehicles
from optical measurements, without direct communications or
measurements of relative velocities (Misra et al., 2015).

The contents of this article are organized as follows. In
Section 2, the problem of motion estimation of a rigid body
using onboard optical and inertial sensors and the measurement
model is introduced. The rigid body states are related to
these measurements. Section 3 introduces artificial energy terms
representing the measurement residuals corresponding to the
rigid body state estimates. The Lagrange–d’Alembert principle
is applied to the Lagrangian constructed from these energy
terms with a Rayleigh dissipation term linear in the velocity
measurement residual, to give the continuous time state estimator.
It is shown that, in the absence of measurement noise, state
estimates converge to actual states with asymptotic stability, and
the domain of attraction is an open dense subset of the state space.
Section 4 provides particular versions of this estimation scheme for
the cases when direct velocitymeasurements are not available and
when only angular velocity is directly measured. In Section 5, the
variational pose estimator is discretized as a Lie group variational
integrator, by applying the discrete Lagrange–d’Alembert principle
to discretizations of the Lagrangian and the dissipation term. This
estimator is simulated numerically in Section 6, for two cases:
the case where at least three beacons are measured at each
time instant; and the under-determined case, where occasionally
less than three beacons are observed. For these simulations, true
states of an aerial vehicle are generated using a given dynamics
model. Optical/inertial measurements are generated, assuming
bounded noise in sensor readings. Using these measurements,
state estimates are shown to converge to a neighborhood of
actual states, for both cases simulated. Finally, Section 7 lists the
contributions andpossible future extensions of thework presented
in this paper.

2. Navigation using optical and inertial sensors

Consider a rigid body in spatial (rotational and translational)
motion. Onboard estimation of the pose involves assigning a
coordinate frame fixed to the vehicle body, and another coordinate
frame fixed in space that serves as the inertial frame. Let O denote
the observed environment and S denote the body. Let S denote a
coordinate frame fixed to S and O be a coordinate frame fixed to
O, as shown in Fig. 1. Let R ∈ SO(3) denote the rotation matrix
from frame S to frame O and b denote the position of origin of S
expressed in frame O. The pose (transformation) from body fixed
frame S to inertial frame O is then given by

g =


R b
0 1


∈ SE(3). (1)

Consider vectors known in the inertial frame O and measured by
inertial sensors in the vehicle-fixed frame S; let β be the number
of such vectors. In addition, consider position vectors of a few
stationary points in the inertial frame O measured by optical
sensors in the vehicle-fixed frame S. Velocities of the vehicle may
be directly measured or can be estimated by linear filtering of the
optical position vector measurements (Izadi et al., 2015). Assume
that these optical measurements are available for j points at time
t , whose positions are known in frame O as pj, j ∈ I(t), where
I(t) denotes the index set of beacons observed at time t . Note
that the observed stationary beacons or landmarks may vary over
timedue to the vehicle’smotion. These points generate


j
2


unique

relative position vectors, which are the vectors connecting any
two of these landmarks. When two or more position vectors are
optically measured, the number of vector measurements that can
be used to estimate attitude is


j
2


+ β . This number needs to be
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Fig. 1. Inertial landmarks on O as observed from vehicle S with optical
measurements.

at least two (i.e.,

j
2


+ β ≥ 2) at an instant, for the attitude to

be uniquely determined at that instant. In other words, if at least
two inertial vectors are measured at all instants (i.e., β ≥ 2), then
beacon position measurements are not required for estimating
attitude. However, at least one beacon or feature point position
measurement is still required to estimate the position of the
vehicle. Note that the use of two vector measurements for attitude
determination was first proposed by the TRIAD algorithm in the
1960s (Black, 1964).

2.1. Pose measurement model

Denote the position of an optical sensor and the unit vector
from that sensor to an observed beacon in frame S as sk ∈ R3 and
uk

∈ S2, k = 1, . . . , k , respectively. Denote the relative position
of the jth stationary beacon observed by the kth sensor expressed
in frame S as qkj . Thus, in the absence of measurement noise

pj = R(qkj + sk) + b = Raj + b, j ∈ I(t), (2)

where aj = qkj + sk are positions of these points expressed in S. In
practice, the aj are obtained from range measurements that have
additive noise; we denote as amj the measured vectors. In the case
of lidar range measurements, these are given by

amj = (qkj )
m

+ sk = (ϱk
j )

muk
+ sk, j ∈ I(t), (3)

where (ϱk
j )

m is the measured range to the point by the kth sensor.
The mean of the vectors pj and amj are denoted as p̄ and ām,
respectively, and satisfy

ām = RT(p̄ − b) + ς̄ , (4)

where p̄ =
1
j
j

j=1 pj, ā
m

=
1
j
j

j=1 a
m
j and ς̄ is the additive

measurement noise obtained by averaging themeasurement noise
vectors for each of the aj. Consider the


j
2


relative position vectors

from optical measurements, denoted as dj = pλ − pℓ in frame
O and the corresponding vectors in frame S as lj = aλ − aℓ, for
λ, ℓ ∈ I(t), λ ≠ ℓ. The β measured inertial vectors are included in
the set of dj, and their corresponding measured values expressed
in frame S are included in the set of lj. If the total number of

measured vectors (both optical and inertial),

j
2


+ β = 2, then
l3 = l1 × l2 is considered a third measured direction in frame S
with corresponding vector d3 = d1 × d2 in frame O. Therefore,

dj = Rlj ⇒ D = RL, (5)

where D = [d1 . . . dn], L = [l1 . . . ln] ∈ R3×n with n = 3 if
j
2


+β = 2 and n =


j
2


+β if


j
2


+β > 2. Note that thematrix

D consists of vectors known in frameO. Denote themeasured value
of matrix L in the presence of measurement noise as Lm. Then,

Lm = RTD + L , (6)

where L ∈ R3×n consists of the additive noise in the vector
measurements made in the body frame S.

2.2. Velocities measurement model

Denote the angular and translational velocity of the rigid
body expressed in body fixed frame S by Ω and ν, respectively.
Therefore, the kinematics of the rigid body is

Ω̇ = RΩ×, ḃ = Rν ⇒ ġ = gξ∨, (7)

where ξ =


Ω

ν


∈ R6 and ξ∨

=


Ω× ν
0 0


and (·)× : R3

→

so(3) ⊂ R3×3 is the skew-symmetric cross-product operator that
gives the vector space isomorphism between R3 and so(3):

x ×
=

x1
x2
x3

×

=

 0 −x3 x2
x3 0 −x1

−x2 x1 0


. (8)

For the general development of the estimation scheme, it is
assumed that the velocities are directly measured. The estimator
is then extended to cover the cases where (i) only angular velocity
is directly measured; and (ii) none of the velocities are directly
measured.

3. Dynamic estimation of motion from proximity measure-
ments

In order to obtain state estimation schemes from measure-
ments as outlined in Section 2 in continuous time, the La-
grange–d’Alembert principle is applied to an action functional of
a Lagrangian of the state estimate errors, with a dissipation term
linear in the velocities estimate error. This section presents the
estimation scheme obtained using this approach. Denote the es-
timated pose and its kinematics as

ĝ =


R̂ b̂
0 1


∈ SE(3), ˙̂g = ĝξ̂∨, (9)

where ξ̂ is rigid body velocities estimate, with ĝ0 as the initial pose
estimate. The pose estimation error is

h = gĝ−1
=


Q b − Q b̂
0 1


=


Q x
0 1


∈ SE(3), (10)

where Q = RR̂T is the attitude estimation error and x = b − Q b̂.
Then one obtains, when ξm

= ξ ,

ḣ = hϕ∨, where ϕ(ĝ, ξm, ξ̂ ) =


ω
υ


= Adĝ


ξm

− ξ̂ ), (11)

where Adg =

 R 0
b×R R


for g =


R b
0 1


. The attitude and

position estimation error dynamics are also in the form

Q̇ = Qω×, ẋ = Qυ. (12)
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3.1. Lagrangian from measurement residuals

Consider the sum of rotational and translational measurement
residuals between the measurements and estimated pose as a
potential energy-like function. Defining the trace inner product on
Rn1×n2 as

⟨A1, A2⟩ := trace(AT
1A2), (13)

the rotational potential function (Wahba’s cost function (Wahba,
1965)) is expressed as

U0
r (ĝ, L

m,D) =
1
2
⟨D − R̂Lm, (D − R̂Lm)W ⟩, (14)

where W = diag(wj) ∈ Rn×n is a positive diagonal matrix
of weight factors for the measured lmj . Consider the translational
potential function

Ut(ĝ, ām, p̄) =
1
2
κyTy =

1
2
κ∥p̄ − R̂ām − b̂∥2, (15)

where p̄ is defined by (4), y ≡ y(ĝ, ām, p̄) = p̄ − R̂ām − b̂
and κ is a positive scalar. Therefore, the total potential function
is defined as the sum of the generalization of (14) defined in Izadi
and Sanyal (2014); Sanyal, Izadi, and Butcher (2014) for attitude
determination on SO(3), and the translational energy (15) as

U(ĝ, Lm,D, ām, p̄) = Ur(ĝ, Lm,D) + Ut(ĝ, ām, p̄)
= Φ


U0

r (ĝ, L
m,D)


+ Ut(ĝ, ām, p̄)

= Φ


1
2
⟨D − R̂Lm, (D − R̂Lm)W ⟩


+

1
2
κ∥p̄ − R̂ām − b̂∥2, (16)

where W is positive definite (not necessarily diagonal), and Φ :

[0, ∞) → [0, ∞) is a C2 function that satisfies Φ(0) = 0 and
Φ ′(x ) > 0 for all x ∈ [0, ∞). Furthermore, Φ ′(·) ≤ α(·) where
α(·) is a Class-K function (Khalil, 2001) and Φ ′(·) denotes the
derivative of Φ(·) with respect to its argument. Because of these
properties of the function Φ , the critical points and their indices
coincide for U0

r and Ur (Izadi & Sanyal, 2014). Define the kinetic
energy-like function:

T

ϕ(ĝ, ξm, ξ̂ )


=

1
2
ϕ(ĝ, ξm, ξ̂ )TJϕ(ĝ, ξm, ξ̂ ), (17)

where J ∈ R6×6 > 0 is an artificial inertia-like kernel matrix.
Note that in contrast to rigid body inertia matrix, J is not subject
to intrinsic physical constraints like the triangle inequality, which
dictates that the sum of any two eigenvalues of the inertia matrix
has to be larger than the third. Instead, J is a gain matrix that
can be used to tune the estimator. For notational convenience,
ϕ(ĝ, ξm, ξ̂ ) is denoted as ϕ from now on; this quantity is the
velocities estimation error in the absence of measurement noise.
Now define the Lagrangian

L(ĝ, Lm,D, ām, p̄, ϕ) = T (ϕ) − U(ĝ, Lm,D, ām, p̄), (18)

and the corresponding action functional over an arbitrary time
interval [t0, T ] for T > 0,

S

L(ĝ, Lm,D, ām, p̄, ϕ)


=

 T

t0
L(ĝ, Lm,D, ām, p̄, ϕ)dt, (19)

such that ˙̂g = ĝ(ξ̂ )∨. The following statement gives the form
of the Lagrangian when perfect (noise-free) measurements are
available, and derives the variational estimator for rigid body pose
and velocities.
Lemma 3.1. In the absence of measurement noise, the Lagrangian is
of the form

L(h,D, p̄, ϕ) =
1
2
ϕTJϕ − Φ


⟨I − Q , K⟩


−

1
2
κyTy, (20)

where K = DWDT and y ≡ y(h, p̄) = Q Tx + (I − Q T)p̄.

Proof. Suppose that all the measured states are noise free.
Therefore, one can replace Lm = L, ām = ā and ξm

= ξ . The
rotational potential function (14) can be replaced by

U0
r (h,D) =

1
2
⟨D − R̂L, (D − R̂L)W ⟩ (21)

=
1
2
⟨I − Q T, (I − Q T)DWDT

⟩ = ⟨I − Q , K⟩,

since R̂L = Q TD for the noise-free case. In addition,

y(h, p̄) = p̄ − R̂ā − b̂ = Q Tx + (I − Q T)p̄, (22)

as b̂ = Q T(b − x). The translational potential function in the
absence of measurement noise can be expressed as

Ut(h, p̄) =
1
2
κyTy. (23)

Therefore, the total potential energy function is

U(h,D, p̄) = Ur(h,D) + Ut(h, p̄)
= Φ


U0

r (h,D)

+ Ut(h, p̄)

= Φ

⟨I − Q , K⟩


+

1
2
κyTy, (24)

and the kinetic energy function is

T (ϕ) =
1
2
ϕTJϕ. (25)

Substituting (24) and (25) into:

L(h,D, p̄, ϕ) = T (ϕ) − U(h,D, p̄) (26)

gives the Lagrangian (20) for the noise-free case. �

The positive definiteweightmatrixW can be selected according
to Lemma 2.1 of Izadi and Sanyal (2014).

3.2. Variational estimator for pose and velocities

The following statement gives the nonlinear variational estima-
tor obtained by applying the Lagrange–d’Alembert principle to the
Lagrangian (18) with a dissipation term linear in the velocities es-
timation error.

Theorem 3.2. The nonlinear variational estimator for pose and
velocities is given by

Jϕ̇ = ad∗

ϕJϕ − Z(ĝ, Lm,D, ām, p̄) − Dϕ,

ξ̂ = ξm
− Adĝ−1ϕ,

˙̂g = ĝ(ξ̂ )∨,

(27)

where ad∗

ζ = (adζ )
T and adζ is defined by

adζ =


w× 0
v× w×


for ζ =


w
v


, (28)

and Z(ĝ, Lm,D, ām, p̄) is defined by

Z(ĝ, Lm,D, ām, p̄) =


Φ ′


U0

r (ĝ, L
m,D)


SΓ (R̂) + κ p̄×y

κy


, (29)
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whereU0
r (ĝ, L

m,D) is defined as (14), y ≡ y(ĝ, ām, p̄) = p̄− R̂ām− b̂
and

SΓ (R̂) = vex

Γ R̂T

− R̂Γ T
= vex


DW (Lm)TR̂T

− R̂LmWDT, (30)

Γ = DW (Lm)T, vex(·) : so(3) → R3 is the inverse of the (·)× map,
and D ∈ R6×6 > 0.
Proof. A Rayleigh dissipation term linear in the velocities of
the form Dϕ is used in addition to the Lagrangian (20), and
the Lagrange–d’Alembert principle from variational mechanics is
applied to obtain the estimator on TSE(3). Reduced variations with
respect to h and ϕ (Bloch, 2003; Marsden & Ratiu, 1999) are
applied, given by

δh = hη∨, δϕ = η̇ + adϕη, where η∨
=


Σ× ρ
0 0


, (31)

for η =


Σ

ρ


∈ R6 and ζ =


w
v


∈ R6, with η(t0) = η(T ) = 0. This
leads to the expression:

δh,ϕS

L(h,D, p̄, ϕ)


=

 T

t0
ηTDϕdt. (32)

Note that variations of attitude and position estimation errors are
of the form

δQ = QΣ×, δx = Qρ, (33)

respectively. Applying reduced variations to the rotational poten-
tial energy term (21), one obtains

δQU0
r (h,D) = ⟨−QΣ×, K⟩ =

1
2
⟨Σ×, KQ − Q TK⟩

= STK (Q )Σ, (34)

where

SK (Q ) = vex

KQ − Q TK


. (35)

Taking first variation of the translational potential energy term (23)
with respect to Q and x yields

δhUt(h, p̄) = κ(δx + δQ p̄)T

x + (Q − I)p̄


= κ


ρTy + ΣTp̄×y


. (36)

Therefore, the first variation of the total potential energy (24) with
respect to estimation errors is

δhU(h,D, p̄) = ZT(h,D, p̄)η, (37)

where Z(h,D, p̄) is defined by

Z(h,D, p̄)

=


Φ ′


⟨I − Q , K⟩


SK (Q ) + κ p̄×


Q Tx + (I − Q T)p̄


κ{Q Tx + (I − Q T)p̄}


. (38)

Taking the first variation of the kinetic energy term (25) with
respect to ϕ results in

δϕT (ϕ) = ϕTJδϕ = ϕTJ(η̇ + adϕη), (39)

after substituting Eq. (31). Therefore, the first variation of the
action functional (19) is obtained as

δh,ϕS

L(h,D, p̄, ϕ)


=

 T

t0


ϕTJ(η̇ + adϕη) − ηTZ(h,D, p̄)


dt

=

 T

t0
ηT


ad∗

ϕJϕ − Z(h,D, p̄) − Jϕ̇

dt + ϕTJη|

T
t0

=

 T

t0
ηT


ad∗

ϕJϕ − Z(h,D, p̄) − Jϕ̇

dt, (40)
applying fixed endpoint variations with η(t0) = η(T ) = 0.
Substituting (40) in expression (32) one obtains

Jϕ̇ = ad∗

ϕJϕ − Z(h,D, p̄) − Dϕ, (41)

where Z(h,D, p̄) is defined by (38). To implement this estimator in
the presence of noisy measurements, substitute Q TD = R̂Lm. This
changes the expression for the rotational potential energy from
(21) to (14). Eq. (35) is also reformulated as

SK (Q ) = vex(DWDTQ − Q TDWDT) (42)

= vex(DW (Lm)TR̂T
− R̂(Lm)WDT) = SΓ (R̂).

Finally, the second row in the matrix Z(h,D, p̄) is replaced by

κ{Q Tx + (I − Q T)p̄} = κ{Q Tb − b̂ + p̄ − Q Tp̄}

= κ{R̂RT(b − p̄) − b̂ + p̄}

= κ{−R̂ām − b̂ + p̄}. (43)

Taking these changes into account, one obtains the first of Eq. (27)
with Z(ĝ, Lm,D, ām, p̄) and SΓ (R̂) defined by (29) and (30),
respectively. Thus, the complete nonlinear estimator equations are
given by (27). �

This variational pose estimator uses a fundamentally new idea of
applying a principle from variational mechanics to obtain a state
estimator, first applied to rigid body attitude estimation in Izadi
and Sanyal (2014). In the proposed approach, the time evolution
of state estimation errors has the form of the dynamics of a rigid
body with Rayleigh dissipation. This results in an estimator for the
motion states that dissipates the ‘‘energy’’ content in the estima-
tion errors (h, ϕ) = (gĝ−1,Adĝ(ξ − ξ̂ )) to provide guaranteed
asymptotic stability in the case of perfect measurements (Izadi &
Sanyal, 2014). This approach differs from the ‘‘minimum-energy’’
approach to nonlinear estimation (Mortensen, 1968), which ap-
plies Hamilton–Jacobi–Bellman (HJB) theory (Kirk, 1971)and can
only be ‘‘approximately solved.’’ The resulting near-optimal filter-
ing approach was applied to estimation of rigid body attitude and
pose in Zamani (2013); Zamani et al. (2013), but has no guarantees
on stability. Comparisons between the variational attitude estima-
tor and some commonly-used attitude estimation schemes were
detailed in Izadi et al. (2015).

3.3. Stability and robustness of estimator

The stability of the estimator (filter) given by Theorem 3.2 is
analyzed here. The following result shows that this scheme is
stable, with almost global convergence of the estimated states to
the real states.

Theorem 3.3. Let the observed position vectors from optical mea-
surements be bounded. Then, the estimator presented in Theo-
rem 3.2 is asymptotically stable at the estimation error state (h, ϕ) =

(I, 0). Further, the domain of attraction of (h, ϕ) = (I, 0) is a dense
open subset of SE(3) × R6.

The proof of this result is omitted here because it is provided
in Misra et al. (2015) for the case of estimation of relative pose and
velocities of one body with respect to another. This proof is also
similar to the proof of stability of the variational attitude estimator
provided in Izadi and Sanyal (2014).

The domain of attraction for (h, ϕ) = (I, 0) is almost global
over the state space TSE(3) ≃ SE(3) × R6, which is the best
possible for continuous control and navigation schemes on a non-
contractible state space (Chaturvedi et al., 2011; Milnor, 1963).
In the presence of measurement noise with bounded frequencies
and amplitudes, one can show that the state estimates converge
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to a bounded neighborhood of the true states. The size of this
neighborhood depends on the values of the estimator gains J, W
and D and amplitude of noise. These estimator gains can also be
designed for desired transient and steady-state behaviors.

Remark 3.4. In the special case that the weight matrix W in
Wahba’s function is chosen as a piecewise time constant matrix
according to Lemma 2.1 of Izadi and Sanyal (2014), K = DWDT

is a constant matrix for all time. Therefore, the RHS of (41) is not
explicitly dependent on time. This makes (h, ϕ) an autonomous
system and therefore the use of Theorem 8.4 of Khalil (2001) is
not required to prove asymptotic stability. One can apply LaSalle’s
invariance principle (Theorem 4.4 in Khalil (2001)) to prove the
convergence of state estimates to the equilibrium (I, 0) in this case.

This nonlinear estimator combines certain desirable features of
stochastic estimation and observer design approaches to state
estimation for unmanned vehicles, when inertial vectors and
inertially fixed beacons or landmarks are measured. It does not
require a dynamics model for the vehicle; instead, it estimates
the dynamics of the vehicle given the measurement model in
Section 2. The variational pose estimator can also be interpreted as
a stable complementary filter (cf. Tayebi, Roberts, and Benallegue
(2011)). Explicit expressions for the vector of velocities ξm can
be obtained for two common cases when these velocities are not
directly measured. These two cases are dealt with next.

4. Variational estimator implemented without direct velocity
measurements

The velocity measurements in (27) can be replaced by filtered
velocity estimates obtained by linear filtering of optical and inertial
measurements. This is both useful and necessary when velocities
are not directly measured. The filtered values ξ f are then used
in place of ξm in the nonlinear estimator given by Theorem 3.2.
Denote the measured vector quantity at time t by zm. A linear
second-order filter of the form

z̈ f + 2µωnż f = ω2
n


zm − z f


, (44)

is used,whereωn is the natural (cutoff) frequency,µ is the damping
ratio, and z f is the filtered value of zm. Thereafter, z f is used in
place of zm in Eq. (27).

4.1. Translational and angular velocity measurements are not
available

In the case that both angular and translational velocity mea-
surements are not available or accurate, rigid body velocities can
be calculated in terms of the inertial and optical measurements. In
order to do so, one can differentiate (2) as follows

ṗj = RΩ×aj + Rȧj + ḃ = R

Ω×aj + ȧj + ν


= 0

⇒ȧj − a×

j Ω + ν = 0

⇒vj = ȧj = [a×

j − I]ξ = G(aj)ξ , (45)

where G(aj) = [a×

j − I] has full row rank. From vision or
Doppler lidar sensors, one can also measure the velocities of the
observed points in frame S, denoted vm

j . The measurement model
for velocities is of the form

vm
j = G(aj)ξ + ϑj, (46)

where ϑj ∈ R3 is the additive error in velocity measurement vm
j .

Instantaneous angular and translational velocity determination
from such measurements is treated in Sanyal et al. (2014). Note
that vj = ȧj, for j ∈ I(t). As Eq. (45) indicates, the relative
velocities of at least three beacons are needed to determine the
vehicle’s translational and angular velocities uniquely at each
instant. However, when only one or two landmarks/beacons are
measured, the estimator can propagate velocity estimates based on
a least squares determination from available measurements. The
rigid body velocities in both cases are obtained using the pseudo-
inverse of G(Af ):

G(Af )ξ f
= V(V f ) ⇒ ξ f

= G
Ě(Af )V(V f ), (47)

where G(Af ) =


G(af1)

...

G(afj )

 and V(V f ) =


v
f
1
...

v
f
j

 , (48)

for 1, . . . , j ∈ I(t). When at least three beacons are measured,

G(Af ) is a full column rankmatrix, andGĚ(Af ) =


GT(Af )G(Af )

−1

GT(Af ) gives its pseudo-inverse. For the case that only one or
two beacons are observed, G(Af ) is a full row rank matrix, whose

pseudo-inverse is given by GĚ(Af ) = GT(Af )

G(Af )GT(Af )

−1
.

4.2. Angular velocity is measured using rate gyros

For the case that rate gyro measurements of angular velocities
are available besides the j feature point (or beacon) position
measurements, the linear velocities of the rigid body can be
calculated using each single position measurement by rewriting
(45) as

ν f
=

j
j=1

(afj )
×Ω f

− v
f
j , (49)

averaging over the j points measured. Averaging the values of
ν derived from all feature points gives a more reliable result.
Therefore, the rigid body’s filtered velocities are expressed in this
case as

ξ f
=

 Ω f

1
j

j
j=1

(afj )
×Ω f

− v
f
j

 . (50)

Remark 4.1. The variational pose estimator of Theorem 3.2 is
asymptotically stable, as stated in Theorem 3.3. However, this
result may not hold for this estimator with ξm replaced by ξ f as
given by Eqs. (47) or (50). In addition, a stochastic interpretation
of this estimator in the future could be used to show that the
expected values of the state estimates converge to true states if the
measurements are unbiased.

5. Discretization for computer implementation

For onboard computer implementation, the continuous time
variational estimation scheme has to be discretized. This dis-
cretization is carried out in the framework of discrete geomet-
ric mechanics, and the resulting discrete-time estimator is in the
form of a Lie group variational integrator (LGVI), as in Sanyal
et al. (2008). As this estimation scheme is obtained from a vari-
ational principle of mechanics, it can be discretized by apply-
ing the discrete Lagrange–d’Alembert principle (Marsden & West,
2001). Consider an interval of time [t0, T ] ∈ R+ separated into
N equal-length subintervals [ti, ti+1] for i = 0, 1, . . . ,N , with
tN = T and ti+1 − ti = ∆t is the time step size. Let (ĝi, ξ̂i) ∈

SE(3) × R6 denote the discrete state estimate at time ti, such that
(ĝi, ξ̂i) ≈ (ĝ(ti), ξ̂ (ti)) where (ĝ(t), ξ̂ (t)) is the exact solution of
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the continuous-time estimator at time t ∈ [t0, T ]. Let the val-
ues of the discrete-time measurements ξm, ām and Lm at time ti
be denoted as ξm

i , āmi and Lmi , respectively. Further, denote the cor-
responding values of the latter two quantities in inertial frame at
time ti by p̄i and Di, respectively. The term representing the energy
content of the pose estimation error, given by (16), is discretized as

U(ĝi, Lmi ,Di, āmi , p̄i) = Ur(ĝi, Lmi ,Di) + Ut(ĝi, āmi , p̄i)

= Φ

U0

r (ĝi, Lmi ,Di)

+ Ut(ĝi, āmi , p̄i)

= Φ
1
2
⟨Di − R̂iLmi , (Di − R̂iLmi )Wi⟩


+

1
2
κ∥p̄i − R̂iāmi − b̂i∥2, (51)

where Wi is the matrix of weight factors corresponding to Di. The
term encapsulating the energy in the velocities estimate error (17),
is discretized as

T

ϕ(ĝi, ξ

m
i , ξ̂i)


=

1
2
ϕ(ĝi, ξ

m
i , ξ̂i)

TJϕ(ĝi, ξ
m
i , ξ̂i), (52)

where J = blockdiag(J,M) and M, J ∈ R3×3 are positive definite.

Lemma 5.1. In the absence of measurement noise, the discrete-time
Lagrangian is of the form

L(hi,Di, p̄i, ϕi) =
1
2
⟨Jω×

i , ω×

i ⟩ +
1
2
⟨Mυi, υi⟩ (53)

− Φ

⟨I − Qi, Ki⟩


−

1
2
κyTi yi,

where yi ≡ y(hi, p̄i) = Q T
i xi + (I − Q T

i )p̄i and J is defined in terms
of the matrix J by J =

1
2 trace[J]I − J .

A Lie group variational integrator (LGVI) introduced in Sanyal,
Nordkvist, and Chyba (2011) is applied to the discrete-time
Lagrangian (53) to obtain the discrete-time estimator. The value
of the total energy function corresponding to this discrete-time
Lagrangian can be shown to decrease with time.

Theorem 5.2. A discrete-time variational estimator corresponding to
the continuous-time estimator proposed in Theorem 3.2 is

(Jωi)
×

=
1

∆t
(FiJ − JF T

i ), (54)

(M + ∆tDt)υi+1 = F T
i Mυi

+ ∆tκ(b̂i+1 + R̂i+1āmi+1 − p̄i+1), (55)

(J + ∆tDr)ωi+1 = F T
i Jωi + ∆tMυi+1 × υi+1

+ ∆tκ p̄×

i+1(b̂i+1 + R̂i+1āmi+1)

− ∆tΦ ′

U0

r (ĝi+1, Lmi+1,Di+1)

SΓi+1(R̂i+1), (56)

ξ̂i = ξm
i − Adĝ−1

i
ϕi, (57)

ĝi+1 = ĝi exp(∆t ξ̂∨

i ), (58)

where Fi ∈ SO(3),

ĝ(t0), ξ̂ (t0)


= (ĝ0, ξ̂0), ϕi = [ωT

i υT
i ]

T, and
SΓi(R̂i) is the value of SΓ (R̂) at time ti, with SΓ (R̂) as defined by (30).

Proof. Consider the first variations with fixed endpoints for the
pose estimation errors in discrete time:

δQi = QiΣ
×

i , Σ0 = ΣN = 0, (59)
δxi = Qiρi, ρ0 = ρN = 0, (60)

whereΣi, ρi ∈ R3 are ‘‘discrete variation vectors’’. It can be shown
that for any ω ∈ R3 we have

(Jω)× = ω×J + Jω×. (61)
Discretizing (12) assuming that the angular velocity estimation
error is constant in the time interval [ti, ti+1] with a constant time
step size ∆t , one gets

Qi+1 = QiFi, i ∈ {0, 1, 2, . . . ,N − 1}, (62)

where Fi ∈ SO(3) is given by

Fi = exp(∆tω×

i ) ≈ I + ∆tω×

i . (63)

The variation of Fi is derived from (62) and δQi = QiΣ
×

i :

δFi = −Σ×

i Fi + FiΣ×

i+1. (64)

Using (61) and (63), one can approximate (Jωi)
× as

(Jωi)
×

= ω×

i J + Jω×

i ≈
1

∆t


(Fi − I)J − J(F T

i − I)


=
1

∆t
(FiJ − JF T

i ). (65)

From (11), the continuous kinematics of the position estimation
error is discretized to first order as
xi+1 − xi

∆t
≈ Qiυi ⇒ xi+1 = ∆tQiυi + xi. (66)

The first variation in υi is then calculated from (66) as

δυi = δ
 1

∆t
Q T
i (xi+1 − xi)


= −Σ×

i υi +
1

∆t
Q T
i (δxi+1 − δxi)

= −Σ×

i υi +
1

∆t
Fiρi+1 −

1
∆t

ρi. (67)

The discrete Lagrangian (53) can be expressed as

L(hi,Di, p̄i, Fi, υi) =
1

2∆t
⟨J(Fi − I), (Fi − I)⟩

+
∆t
2

⟨Mυi, υi⟩ − ∆tΦ

U0

r (hi,Di)


(68)

−
∆t
2

κ(Qiyi)T(Qiyi).

The action functional (19) is replaced by the action sum

Sd

L(hi,Di, p̄i, Fi, υi)


= ∆t

N−1
i=0

L(hi,Di, p̄i, Fi, υi). (69)

Applying the discrete Lagrange–d’Alembert principle with two
Rayleigh dissipation terms for angular and translational motions
gives

δSd

L(hi,Di, p̄i, Fi, υi)


(70)

+ ∆t
N−1
i=0


⟨Σi, τi⟩ + ⟨ρi, fi⟩


= 0

⇒

N−1
i=0


1

∆t
⟨δFi, J(Fi − I)⟩ + ∆t⟨δυi,Mυi⟩

−
∆t
2

Φ ′

U0

r (hi,Di)


Σ×

i , S×

Ki
(Qi)


− ∆tκ⟨ρi, yi⟩

−∆tκ⟨Σ×

i , yip̄Ti ⟩ +
∆t
2

⟨Σ×

i , τ×

i ⟩ + ∆t⟨ρi, fi⟩


= 0.

As symmetric matrices are orthogonal to skew-symmetric matri-
ces in the trace inner product, using (63) the first term in (68) is
expressed as

⟨δFi, J(Fi − I)⟩ =⟨Σ×

i , JF T
i ⟩ − ⟨Σ×

i+1, F
T
i J⟩ (71)

=
1
2
⟨Σ×

i , JF T
i ⟩ −

1
2
⟨Σ×

i , FiJ⟩



M. Izadi, A.K. Sanyal / Automatica 71 (2016) 78–88 85
−
1
2
⟨Σ×

i+1, F
T
i J⟩ +

1
2
⟨Σ×

i+1, JFi⟩

=−
∆t
2

⟨Σ×

i , (Jωi)
×
⟩ +

∆t
2

⟨Σ×

i+1, F
T
i (Jωi)

×Fi⟩.

Hence Eq. (70) can be re-expressed as
N−1
i=0


−

1
2
⟨Σ×

i , (Jωi)
×
⟩ +

1
2
⟨Σ×

i+1, F
T
i (Jωi)

×Fi⟩

−
∆t
2

⟨Σ×

i , (υi × Mυi)
×
⟩ + ⟨Fiρi+1,Mυi⟩

− ⟨ρi,Mυi⟩ −
∆t
2

Φ ′

U0

r (hi,Di)


Σ×

i , S×

Ki
(Qi)


− κ∆t


ρi, yi


−

κ∆t
2


Σ×

i , (p̄×

i yi)
×


+
∆t
2

⟨Σ×

i , τ×

i ⟩ + ∆t⟨ρi, fi⟩


= 0. (72)

Separating this equation into two (rotational and translational)
parts leads to

(M + ∆tDt)υi+1 =F T
i Mυi − ∆tκyi+1, (73)

(J + ∆tDr)ωi+1 =F T
i Jωi + ∆tMυi+1 × υi+1

− ∆tκ p̄×

i+1yi+1 (74)

− ∆tΦ ′

U0

r (hi+1,Di+1)

SKi+1(Qi+1),

using the identity F Tw×F = (F Tw )× and substituting τi =

−Drωi and fi = −Dtυi, where Dr and Dt are positive definite
matrices such that

D =


Dr 0
0 Dt


.

In the presence of measurement noise, Q T
i Di and yi are replaced by

R̂iLmi and p̄i−b̂i−R̂iāmi , respectively. This results in the discrete-time
state estimator in the form of the Lie group variational integrator
(54)–(58). �

Note that unlike the dynamics model-based discrete-time rigid
body state estimators using LGVI schemes in Sanyal et al. (2008);
Sanyal and Nordkvist (2012), the above is a model-free state
estimator like the recent ones in Izadi and Sanyal (2014); Izadi et al.
(2015).

Remark 5.3. In the absence of any velocity measurements or
only angular velocity measurements, the expressions provided in
Section 4 to calculate rigid body velocities are still valid in discrete-
time. One can use the discrete-time variables introduced in this
section in place of their continuous-time counterparts. The second-
order Butterworth filter (44) is discretized using the Newmark-β
Method asz

f
i+1 = z fi + ∆tż fi +

∆t2

4
(z̈ fi + z̈ fi+1)

ż fi+1 = ż fi +
∆t
2

(z̈ fi + z̈ fi+1).

(75)

This method gives the filtered positions and velocities as
z fi+1

ż fi+1


=

1
4 + 4µωn∆t + ω2

n∆t2
4 + 4µωn∆t − ω2

n∆t2 4∆t ω2
n∆t2

−4ω2
n∆t 4 − 4µωn∆t − ω2

n∆t2 2ω2
n∆t


 z fi
ż fi

zmi + zmi+1

 , (76)
where zmi = zm(ti) and z fi = z f (ti), respectively. As with
the continuous time version, ξm

i can be replaced with ξ
f
i in the

estimator equations.

6. Numerical simulations

This section presents numerical simulation results for the
discrete-time estimator obtained in Section 5. In order to
numerically simulate this estimator, simulated true states of an
aerial vehicle flying in a room are produced using the kinematics
and dynamics equations of a rigid body. The vehicle mass and
moment of inertia are taken to be mv = 420 g and Jv =

[51.2 60.2 59.6]T g m2, respectively. The resultant
external forces and torques applied on the vehicle are φv(t) =

10−3
[10 cos(0.1t) 2 sin(0.2t) − 2 sin(0.5t)]T N and τv(t) =

10−6φv(t) N.m, respectively. The room is assumed to be a cubic
space of size 10 m × 10 m × 10 m with the inertial frame origin
at the center of this cube. The initial attitude and position of the
vehicle are

R0 = expmSO(3)

π

4
×

3
7

−
6
7

2
7

T×


,

and b0 = [2.5 0.5 − 3]T m. (77)

This vehicle’s initial angular and translational velocities, respec-
tively, are

Ω0 = [0.2 − 0.05 0.1]T rad/s,

and ν0 = [−0.05 0.15 0.03]T m/s.
(78)

The vehicle dynamics is simulated over a time interval of T =

150 s, with a time stepsize of ∆t = 0.02 s. The trajectory
of the vehicle over this time interval is depicted in Fig. 2. The
following two inertial directions, corresponding to nadir and
Earth’s magnetic field direction, are measured by the inertial
sensors on the vehicle:

d1 = [0 0 − 1]T, d2 = [0.1 0.975 − 0.2]T. (79)

For optical measurements, eight beacons are located at the eight
vertices of the cube, labeled 1–8. The positions of these beacons
are known in the inertial frame and their index (label) and relative
positions are measured by optical sensors onboard the vehicle
whenever the beacons come into the field of view of the sensors.
Three identical cameras (optical sensors) and inertial sensors are
assumed to be installed on the vehicle. The cameras are fixed to
known positions on the vehicle, on a hypothetical horizontal plane
passing through the vehicle, 120◦ apart from each other, as shown
in Fig. 1. All camera readings contain random zero mean signals
whose probability distributions are normalized bump functions
with width of 0.5◦. The filtered velocities are obtained using
Eq. (47). The following are selected for the positive definite
estimator gain matrices:

J = diag

[0.9 0.6 0.3]


,

M = diag

[0.0608 0.0486 0.0365]


,

Dr = diag

[2.7 2.2 1.5]


, Dt = diag


[0.1 0.12 0.14]


. (80)

For simplicity, the function Φ(·) is selected to be Φ(x) = x. The
initial state estimates have the following values:

ĝ0 = I, Ω̂0 = [0.1 0.45 0.05]T rad/s,

and ν̂0 = [2.05 0.64 1.29]T m/s.
(81)

The performance of the proposed estimator is presented for two
different cases.
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Fig. 2. Position and attitude trajectory of the simulated vehicle in 3D space.

Fig. 3. Principal angle of the attitude and position estimation error for CASE 1.

6.1. CASE 1: At least three beacons are observed at each time instant

Having three beacons measured at each time guarantees full
determination of vehicle’s instantaneous translational and angular
velocities. A conic field of view (FOV) of 2◦

× 40◦ for cameras
satisfies this condition for the given volume. The discrete-time
estimator (54)–(58) is simulated over a time interval of T = 20
s with sampling interval ∆t = 0.02 s. At each time instant, (54)
is solved using Newton–Raphson iterations. Following this, the
remaining equations (all explicit) are solved for the state estimates.
The principal angle of the attitude estimation error and the position
estimation error for CASE 1 are plotted in Fig. 3. Plots of the angular
and translational velocity estimation errors are shown in Fig. 4.

6.2. CASE 2: Less than three beacons are measured at some time
instants

To implement the variational estimator for the case that less
than three optical measurements are available, the field of view of
the cameras is decreased to limit the number of beacons observed.
Assuming the cameras have conical fields of view of 2◦

× 25◦,
the minimum number of beacons observed instantaneously drops
to one during the simulated time interval. The true dynamics
of the aerial vehicle, simulated time duration, and sample rate
are identical to CASE 1. Fig. 5 depicts the principal angle of the
attitude estimation error and the position estimation error for
CASE 2, and Fig. 6 shows the angular and translational velocity
estimation errors. All estimation errors are shown to converge to a
neighborhood of (h, ϕ) = (I, 0) in both cases.
Fig. 4. Angular and translational velocity estimation error for CASE 1.

Fig. 5. Principal angle of the attitude and position estimation error for CASE 2.

Fig. 6. Angular and translational velocity estimation error for CASE 2.

7. Conclusion

This article proposes an estimator for rigid body pose and
velocities, using optical and inertial measurements by onboard
sensors. The sensors are assumed to provide (possibly noisy) mea-
surements in continuous-time or at a sufficiently high frequency.
An artificial kinetic energy quadratic in rigid body velocity esti-
mate errors is defined, as well as two fictitious potential energies:
(1) a generalization of Wahba’s cost function for attitude estima-
tion error, and (2) a quadratic function of the vehicle’s position
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estimate error. Applying the Lagrange–d’Alembert principle to a
Lagrangian consisting of these energy-like terms and a dissipation
term linear in velocities estimation error, an estimator is designed
on the Lie group of rigid body motions. This estimator is shown to
be almost globally asymptotically stable, with estimates converg-
ing to actual states in a domain of attraction that is open and dense
in the state space. The continuous estimator is discretized ap-
plying the discrete Lagrange–d’Alembert principle to the discrete
Lagrangian and dissipation terms linear in rotational and transla-
tional velocity estimation errors. In the presence of measurement
noise, numerical simulations show that state estimates converge
to a bounded neighborhood of the true states. Future extensions of
this work include higher-order discretizations of the continuous-
time filter given here, extending the variational estimation frame-
work with dissipation to other mechanical systems, and obtaining
a stochastic interpretation of this variational pose estimator.
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