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Design considerations of agile, precise, and reliable attitude control for a class of small spacecraft and satellites using

adaptive singularity-free control moment gyroscopes (ASCMG) are presented. An ASCMG differs from that of a

conventional controlmoment gyroscopes (CMG) because it is intrinsically free fromkinematic singularities and so does

not require a separate singularity avoidance control scheme.Furthermore,ASCMGsareadaptive to the asymmetries in

the structuralmembers (gimbal and rotor) aswell asmisalignments between the center ofmass of the gimbal and rotors.

Moreover, ASCMG clusters are highly redundant to failure and can function as variable- and constant-speed CMGs

without encountering singularities. A generalized multibody dynamics model of the spacecraft–ASCMG system is

derivedusing thevariational principles ofmechanics, relaxing the standard set of simplifyingassumptionsmade inprior

literatureonCMG.Thedynamicsmodel soobtained shows the complexnonlinearcouplingbetween the internaldegrees

of freedomassociatedwithanASCMGand the spacecraft attitudemotion.Thegeneraldynamicsmodel is then extended

to include the effects of multiple ASCMG, called the ASCMG cluster, and the sufficient conditions for nonsingular

cluster configurations are obtained.The adverse effects of the simplifyingassumptions that lead to the intricate design of

the conventional CMG, and how they lead to singularities, become apparent in this development. A bare-minimum

hardware prototype of anASCMGusing low-cost commercial off-the-shelf components is developed to show the design

simplicity and scalability. A geometric variational integration scheme is obtained for this multibody spacecraft–

ASCMG system for numerical and embedded implementation. Attitude pointing control of a CubeSat with three

ASCMGs in the absence of external torques is numerically simulated to demonstrate the singularity-free characteristics

and redundancy of the ASCMG cluster.

I. Introduction

A CONTROL moment gyroscope (CMG) is a momentum

exchange device that can be used as an actuator for spacecraft

attitude control [1], including attitude stabilization of agile spacecraft

[2]. A typical CMG consists of a symmetric, balanced rotor flywheel

that can spin about its axis, while this rotation axis is rotated on a

plane perpendicular to a gimbal on which the rotor assembly is

mounted; see Fig. 1. CMGs can be categorized as single/double

gimbal control moment gyroscope (SGCMG/DGCMG). Further, a

variable-speed control moment gyroscope (VSCMG) combines the

features of a constant-speed SGCMG with a reaction wheel (RW),

which has variable angular speed of the rotor. Defining features and

comparisons between SGCMGs andDGCMGs are given in the book

byWie [3]. SGCMGcan produce larger torques for the same actuator

mass compared to reaction wheels [4,5]. However, because of the

complex nonlinear dynamics, with inherent geometric singularities

between the input (gimbal) space and output (momentum) space,

SGCMGs are not as commonly applied as RWs. Singularity analysis

and singularity avoidance steering laws have been studied for

different CMG configurations [6]. The dynamics models of CMGs

obtained in the prior literature are based on a set of simplifying

assumptions that are listed in Sec. II and given in Refs. [3,7–9]. From

here on, CMG is used synonymously with SGCMG in this paper.

Variations in the inertiamatrix of a spacecraft with CMGs under these

assumptions were considered in [10].

The adaptive singularity-free control moment gyroscope

(ASCMG) does away with the assumptions in the design and

dynamics model used for standard CMGs. The resulting design is
asymmetric, with the centers of mass (c.m.) of the gimbal structure
and rotor (flywheel) structure not coinciding. It is adaptive because it
can be operated in both variable-speed and constant-speed modes,
and a cluster can provide singularity-free three-axis attitude control
of the base spacecraft. To better understand the relations between
control inputs and base-body rotational motion, the dynamics of a
spacecraft with an ASCMG is developed first, using a variational
approach in the framework of geometric mechanics. Thereafter, the
ASCMG is specialized to the case that its rotor flywheel is operated at
constant speed (i.e., in CMGmode). Because the configuration space
of rotational motion of a spacecraft with internal actuators is a
nonlinear manifold, the global dynamics of this system is treated
using the formulation of geometric mechanics [11,12]. The treatment
of the dynamics and control of a rigid body (spacecraft) with an
internal actuated rotor (reaction wheel) has been provided in [12].
Prior work on control of gyroscopic systems applied to rigid-body
attitude tracking and stabilization in the framework of geometric
mechanics can be found in [13–15]. This work uses the global
representation of the attitude of a spacecraft provided by the rotation
matrix from the spacecraft base-body-fixed coordinate frame to the
inertial coordinate frame. This approach is powerful and general
enough to globally treat the dynamics of a spacecraft with one or
more ASCMGs without simplifying assumptions.

II. Motivation

The ASCMG dynamics model presented here is based on the
generalized VSCMG model detailed in [16], which is currently the
only model that relaxes the commonly used assumptions that
simplify the dynamics. For the sake of completeness, we reiterate
these commonly used assumptions for VSCMGs and CMGs next.
Assumption 1: There is no offset between the rotor (flywheel)

center of mass and the gimbal structure’s center of mass.
Assumption 2: Both the gimbal and the rotor-fixed coordinate

frames are their corresponding principal axes frames, and the rotor is
axisymmetric. Both rotor and gimbal inertias are about their
respective center of masses.
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Assumption 3: The gimbal frame structure’s angular momentum is
“negligible” compared to that of the flywheel.
Assumption 4: The angular acceleration of the gimbal frame is

negligible.
It is shown in [16] that these assumptions lead to the output torque

of a CMG lying along the plane perpendicular to its gimbal axis.
Because vectors lying on different planes in three-dimensional
Euclidean space can be parallel, this leaves open the possibility that
the output torque or angular momentum vectors generated by a set of
three or more such CMGs do not span R3 at some instants. Indeed,
this momentary (instantaneous) occurrence of a lack of spanning
vectors leads to instantaneous singularities in the transformation from
gimbal angular rates to torque generated on the spacecraft bus. At the
instants when these singularities occur, an arbitrary torque vector on
the spacecraft bus cannot be generated by the cluster of CMGs.
Further, the occurrence of singularities cannot be removed by
adding more CMGs or by arranging them in any other configuration.
Besides this aspect of singularities in the transformation from gimbal
rates to output torque (or output angular momentum), there are also
difficulties associated with the manufacture of CMGs under the
constraints posed by these assumptions. In particular, assumptions 1,
2, and 3 impose stringent conditions on the manufacturing, even if
these assumptions are “approximately” satisfied. Assumptions 3 and
4 also impose constraints on the operations of CMGs. Although
manufacturing tolerances may be relaxed for large CMGs operating
in large spacecraft, these constraints become very stringent for
small CMGs designed to operate in microspacecraft. The primary
motivation for this work is to relax these restrictive assumptions to
avoid the drawbacks associated with the use and manufacture of
CMGs, especially for use in small satellites.

III. Spacecraft Dynamics with an Adaptive
Singularity-Free Control Moment Gyroscope

The dynamics model of a spacecraft with a single ASCMG is
formulated here. The gimbal axis of the ASCMG is perpendicular to
the rotor’s axis of rotation, which passes through its center of mass.

There is a scalar offset along the rotor axis between the centers of

mass of the gimbal and the rotor; this offset is denoted by σ.

A. Coordinate Frame Definitions

Consider a right-handed coordinate frame fixed to the center of

mass of the spacecraft base body (spacecraft bus) that has an

ASCMG as an internal attitude actuator. The attitude of the

spacecraft is given by the rotation matrix from this base-body-fixed

coordinate frame to an inertially fixed coordinate frame. Consider

the gimbal of the ASCMG rotating about an axis fixed with respect

to this spacecraft base-body-fixed coordinate frame. Let g ∈ S2

denote the fixed axis of rotation of the gimbal, and let α�t� represent
the gimbal angle, which is the rotation angle of rotor axis η about

the gimbal axis g. Here, Sn is an n-sphere defined by

Sn � fx ∈ Rn�1: kxk � rg, where r is the radius of the sphere.

Then, η�α�t�� ∈ S2 denotes the instantaneous direction of the axis of
rotation of the rotor, which is orthogonal to g and depends on the

gimbal angle α�t�. Let θ�t� denote the instantaneous rotation angle

of the rotor about its rotation axis η�α�t��; this is the angle between
the first axis of an ASCMG rotor-fixed coordinate frame and the

gimbal axis, where the rotor axis forms the second coordinate axis

of this coordinate frame. For an ASCMG, the angular speed of the

rotor _θ�t� is time-varying by default, but it can also be set to constant

speed corresponding to operation in CMG mode; details are

provided in Sec. V. Both g and η�α�t�� are expressed as orthogonal
unit vectors in the base-body coordinate frame. Let σ be the distance
of the center of rotation of the rotor from the center of mass of the

gimbal; this distance is assumed to be along the vector η�α�t��.
Define an ASCMG gimbal-fixed coordinate frame with its first

coordinate axis along g, its second axis along η�α�t��, and its third

axis along g × η�α�t��, to form a right-handed orthonormal triad of

basis vectors as depicted in Fig. 1.

B. Rotational Kinematics

If η�0� denotes the initial rotor axis direction vector with respect to
the base-body frame, the rotor axis at time t > 0 is given by

η�α�t�� � exp�α�t�g×�η�0� (1)

using Rodrigues’s rotation formula. The time rate of change of the

rotor axis η�α�t�� is given by

_η�α�t�; _α�t�� � _α�t�g×η�α�t�� (2)

where the map �⋅�×:R3 → so�3� is the vector space isomorphism

∈ R3 and ∈ so�3�, given by

g× �
2
4 gx
gy
gz

3
5×

�
2
4 0 −gz gy

gz 0 −gx
−gy gx 0

3
5

Let Rg denote the rotation matrix from an ASCMG gimbal-fixed

coordinate frame to the spacecraft base-body coordinate frame,

which can be expressed as

Rg�α�t�� � � g η�α�t�� g × η�α�t�� � (3)

The time derivative of Rg is then given by

_Rg�α�t�; _α�t�� � _α�t�Rg�α�t��e×1 (4)

where e1 � � 1 0 0 �T , e2 � � 0 1 0 �T , and e3 � � 0 0 1 �T
are the standard basis vectors (expressed as column vectors) of R3.

Because e1 denotes the gimbal axis in the gimbal-fixed frame, the

angular velocity of the gimbal-fixed frame with respect to the base

body, expressed in the base-body frame, is

ωg�t; _α� � _α�t�g (5)

Fig. 1 Schematic of ASCMG showing an offset σ between the rotor and
gimbal center of mass.

2 PRABHAKARAN AND SANYAL



Let θ�t� denote the instantaneous angle of rotation of the rotor

about its symmetry axis η�α�t��; this is the angle between the first axis
of an ASCMG rotor-fixed coordinate frame and the gimbal axis,
where the rotor axis forms the second coordinate axis of this

coordinate frame. For operation in VSCMGmode, the angular speed

of the rotor _θ�t� is time-varying, and a constant rotor rate corresponds
to CMGmode operations; details are provided in Sec. V. The rotation

matrix from this ASCMG rotor-fixed coordinate frame to the

base-body coordinate frame is

Rr�α�t�; θ�t�� � Rg�α�t�� exp�θ�t�e×2 � (6)

The time rate of change of the rotation matrix Rr is obtained as
follows:

_Rr�α�t�; θ�t�; _α�t�; _θ�t��
� _Rg�α�t�; _α�t�� exp�θ�t�e×2 � � Rg�α�t�� exp�θ�t�e×2 �_θ�t�e×2 ;
� _α�t�Rr�α�t�; θ�t���exp�−θ�t�e×2 �e1�× � Rr�α�t�; θ�t��_θ�t�e×2

using the fact thatRTa×R � �RTa�× forR ∈ SO�3� anda ∈ R3 [17].

It can be verified that the following holds for ϕ ∈ S1:

exp�ϕe×2 �e1 � �cosϕ�e1 − �sinϕ�e3
Making use of this identity, the time derivative of Rr can be

expressed as

_Rr�α�t�; θ�t�; _α�t�; _θ�t��
� Rr�α�t�; θ�t��

�
_α�t���cos θ�t��e1 � �sin θ�t��e3� � _θ�t�e2

�
×

Therefore, the angular velocity of the ASCMG rotor with respect

to the base body, expressed in the base-body frame, is

ωr�α�t�; _α�t�; _θ�t��
� Rr�α�t�; θ�

�
_α�t���cos θ�t��e1 � �sin θ�t��e3� � _θ�t�e2

�
� _α�t�Rg�α�t��e1 � _θ�t�Rg�α�t��e2 � _α�t�g� _θ�t�η�α�t�� (7)

Let R�t� denote the rotation matrix from the base-body-fixed

coordinate frame to an inertial coordinate frame. If Ω�t� is the total
angular velocity of the base body expressed in the base-body frame,
then the attitude kinematics of the spacecraft base body is given by

_R�t� � R�t�Ω�t�× (8)

Let ρg denote the position vector from the center of mass of the
base body to the center of mass of the gimbal, expressed in the base-

body frame. The position vector from the center of mass of the base-

body to the center of mass of the rotor is therefore given by

ρr�α�t�� � ρg � ση�α�t��, in the base-body frame. These vectors
expressed in the inertial frame are

rg�R�t�� � R�t�ρg and rr�R�t�; α�t�� � R�t�ρr�α�t��

Thus, the inertial velocities of these centers of masses with respect

to the base-body center of mass are given by

_rg�R�t�;Ω�t�� � R�t�Ω�t�×ρg and

_rr�R�t�;Ω�t�; α�t�; _α�t�� � R�t�
�
Ω�t�×ρr�α�t�� � σ _α�t�g×η�α�t��

�
(9)

The spacecraft with an ASCMG has five rotational degrees of

freedom, which are described by the variables α, θ, and R. The
configuration space Q of this system has the structure of a trivial

principal (fiber) bundle with base space B � T2 � S1 × S1 and fiber
G � SO�3� [18].

C. Formulation of the Equations of Motion

The equations of motion for a spacecraft with an ASCMG are
obtained using variational mechanics, taking into account the
geometry of the configuration space. Rigorous and comprehensive
details of the derivation of kinematics and dynamics equation of a
spacecraft with ASCMGs are given in Refs. [16,19,20]. For the sake
of completeness, we provide some details of the obtained
dynamics model.
The generalized model of an ASCMG consists of a rotor of mass

mr with inertia Jr resolved about its center of mass; the rotor is
mounted on a gimbal structural frame of mass mg with inertia Jg
resolved about the point of intersection of the gimbal axis and the
rotor axis. For notational convenience, the time dependence of
variables is not explicitly denoted in the remainder of this paper, i.e.,
Ω � Ω�t�, Rg�α� � Rg�α�t��, _rr�α; _α� � _rr�α�t�; _α�t��, etc.
The total rotational kinetic energy of a spacecraft with one

ASCMG is

T�γ; χ� � 1

2
χTJ �γ�χ (10)

where,

γ �
�
α�t�
θ�t�

�
; χ �

�
Ω�t�
_γ�t�

�
and J �γ� �

�
Λ�γ� B�γ�
B�γ�T Jgr�γ�

�
(11)

Consider the spacecraft system to be in the absence of gravity. In
this case, the Lagrangian of the spacecraft with an ASCMG is given
by L�γ; χ� � T�γ; χ�. Note that the Lagrangian is independent of the
attitude R of the base body in this case. Define the following angular
momentum quantities, which depend on the kinetic energy (10):

Π � ∂L
∂Ω

� ∂T
∂Ω

� Λ�γ�Ω
z�}|�{Basebodymomenta

� B�γ�_γ|{z}
ASCMGmomenta

(12)

p � ∂L
∂_γ

� ∂T
∂_γ

� B�γ�TΩ� Jgr�γ�_γ (13)

Associated inertia quantities occurring in Eqs. (11–13) are

Λ�γ� � Λ0 � IT�γ�; Λ0 � Jb − �mg �mr��ρ×g �2;
IT�γ� � Jc�γ� � Ic�α� −mrση�α�×ρ×g (14)

Jc�γ� � Rg�α�JgRg�α�T � Rr�γ�JrRr�γ�T (15)

Ic�α� � −mrσ
�
ρ×gη�α�× � σ�η�α�×�2

�
(16)

B�γ� �
h
�Jc�γ� � Ic�α��g RrJrR

T
r η�α�

i
∈ R3×2 (17)

Ir�α� � −mr�ση�α�×�2; and (18)

Jgr�γ� �
�
gT�Jc�γ� � Ir�α��g gTRrJrR

T
r η�α�

η�α�TRrJrR
T
r g η�α�TRrJrR

T
r η�α�

�
(19)

Here, Jb is the inertia of the spacecraft base body; Jg and Jr are the
corresponding gimbal and rotor inertias, respectively. The constant
part of total inertia in the base-body frame is denoted byΛ0, whereas
IT�γ� is the total time-varying part of inertia in the base-body frame.
Jc�γ� and Ic�α� are the offset-independent part of inertia and
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offset-dependent part of the ASCMG inertia in the spacecraft base-

body frame, respectively. The equations of motion are obtained from

Eqs. (12) and (13) by applying the Lagrange–d’Alembert principle:

dΠ
dt

� Π × Ω (20)

dp

dt
� ∂T

∂γ
� τ (21)

For an axisymmetric rotor rotating about its axis of symmetry, the

Lagrangian is independent of the angle θ, and the scalar angular

momentum pθ would be conserved in the absence of any friction or

damping torques acting on the rotor.

IV. Angular Momentum of the Generalized Adaptive
Singularity-Free Control Moment Gyroscope Model

This section provides a generalized expression for angular

momentum of the spacecraft due to an ASCMG, which is the second

term in Eq. (12), without any of the assumptions used in the prior

literature as listed in Sec. II. This expression is also derived in [16].

The momentum contribution from an ASCMG to the total angular

momentum of the spacecraft is given by

u � B�γ�_γ � �Jc�γ� � Ic�α�� _αg� RrJrR
T
r
_θη�α� (22)

The inertia terms in Eqs. (15) and (16) are simplified to

Jc�γ� � −mrσ
�
ρ×gη�α�× � σ�η�α�×�2

�
Therefore,

u � _αJc�γ�g� _αIc�α�g� _θRrJrR
T
r η�α� (23)

Note thatRr � Rg exp�θe×2 �. The first term on the expression for u
can be simplified to

Jc�γ�g � RgJge1 � RrJr�cos θe1 � sin θe3� (24)

The second term in Eq. (23) can be written as

_αIc�α�g � mrσ
h
ρ×g � ση�α�×

i
_η�α� (25)

and the last term of Eq. (23) is

RrJrR
T
r η�α� � RrJre2 (26)

Using Eqs. (24–26), expression (23) for u leads to

u � _α
�
�RgJge1 � RrJr�cos θe1 � sin θe3��

�mrσ�ρ×g � ση�α�×�g×η�α�
�
� _θRrJre2 (27)

This angular momentum expression [Eq. (27)] for the generalized

ASCMG model can be reduced to an ASCMG with constant-speed

rotor, as described next in Sec. V.

V. Reduction to Constant-Speed Adaptive
Singularity-Free Control Moment Gyroscope

An ASCMG can be operated as a CMG by spinning the rotor

flywheel at a constant angular velocity (_θ � c; �θ � 0). Equation (27)
can be reexpressed as

u � �D�α; θ� E�α� �
"
_α

c

#
; or

u − cE�α� � _αD�α; θ�;
where; D�α; θ� � �RgJge1 � RrJr�cos θe1 � sin θe3��

�mrσ�ρ×g � ση�α�×�g×η�α�;
and E�α� � RrJre2 (28)

For the case of multiple (n ≥ 3) CMGs, we have an ASCMG
cluster whose momentum contribution from Eqs. (22) and (27) is

u �
Xn
i�1

Di�αi; θi� _αi �
Xn
i�1

Ei�αi�ci

u � D�ϑ;Θ� _ϑ� E�ϑ�C;
�u ≔ u − E�ϑ�C � D�ϑ;Θ� _ϑ (29)

Here, u is the total angular momentum from the ASCMG cluster, and

Θ � � θ1 θ2 · · · θn �T ∈ Rn (30)

ϑ � � α1 α2 · · · αn �T ∈ Rn (31)

E �
h
E1�α1�kE2�α2�k · · · kEn�αn�

i
∈ R3×n (32)

D �
h
D1�α1; θ1�kD2�α2; θ2�k · · · kDn�αn; θn�

i
∈ R3×n (33)

and; C � _Θ � � c1 c2 · · · cn �T ∈ Rn (34)

Note that, in the traditional dynamics model for CMGs, the matrix
D in Eq. (33) does not depend on θi because the rotor is assumed to be
axisymmetric. Moreover, the angular momentum generated by the
CMGs does not depend on their location inside the spacecraft body
(denoted by ρig) if there is no offset between the centers of mass of the
gimbal frame and the rotor/flywheel.

VI. Attitude Control Using Adaptive Singularity-Free
Control Moment Gyroscope

For spacecraft attitude stabilization or tracking using ASCMG
clusters operated in CMGmode, one needs to ensure that the angular
velocityΩ, or alternately the spacecraft base-body momentumΠb, is
controlled by the internalmomentumu, which depends on the gimbal
rates _ϑ. One can express the total angular momentum of a spacecraft
with n ASCMGs using Eq. (12) as follows:

Π � Πb � u; where Πb � Λ�ϑ;Θ�Ω;
and u � D�ϑ;Θ� _ϑ� E�ϑ�C (35)

Therefore, the attitude dynamics of the spacecraft with a cluster of
ASCMGs is

_Πb � Πb ×Ω� �u × Ω − _u� � Πb ×Ω� τcp (36)

where τcp � u × Ω − _u is the control torque generated by the
“internal”momentum u from the ASCMGs. Note that, from Eq. (36)
and the attitude kinematics [Eq. (8)], the total momentum in an
inertial frame ΠI � RΠ � R�Πb � u� is conserved. There are
several control problems of interest for a spacecraft with nASCMGs.
For most space telescopes and Earth observation applications in low
Earth orbit, spacecraft attitude maneuvers require high agility and
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pointing precision. Here, a pointing maneuver of an agile spacecraft

with ASCMG cluster is considered.
The objective of a pointing maneuver for spacecraft is to point a

body-fixed imaging, communication, or other instrument in a specified

direction in a reference frame. To point a spacecraft to a desired

attitude, a continuous feedback controller given by τcp�R;Ω�: SO�3� ×
R3 → R3 is selected that asymptotically stabilizes the desired attitude

Rd ∈ SO�3� with zero angular velocity. The continuous feedback

control torque for this system is given by [21]

τcp � −LvΩ − LpΞ�R� (37)

where Lv, Lp ∈ R3×3 are positive–definite matrices and

Ξ�R� ≜
X3
i�1

aiei × �RT
dR:ei� (38)

with � e1 e2 e3 � ≡ I3×3 and a � � a1 a2 a3 �T , where a1, a2,
and a3 are distinct positive integers. This control law asymptotically

stabilizes the attitude and angular velocity states to �R;Ω� � �Rd; 0�,
for a given desired attitude, Rd ∈ SO�3� [21].
The control inputs for a spacecraft with an ASCMG cluster are the

CMG gimbal rates, obtained by taking the pseudoinverse of D in

Eq. (29). This gives the gimbal rates _αi for all CMGs with constant

rotor rates _θi � ci as

_ϑ � D† �u;

where D† � DT�DDT�−1 (39)

and �u � u − E�ϑ�C, where u is obtained by integrating

τcp � u ×Ω − _u. The CMGs need to be oriented in a way such that

D ∈ R3×n in Eq. (33) always has full row rank for n ≥ 3 (i.e.,DDT is

nonsingular). Necessary and sufficient conditions for D to be

nonsingular are given in Sec. VII.
Additionally, the CMGs can be maintained at their nominal rates

_ϑ⋆, without exerting any torque on the spacecraft bus, by operating

the CMGs in the null space of D ∈ R3×n, called null motions of the

ASCMG cluster.When n ≥ 3 for an ASCMG cluster, Eq. (39) can be

modified to include null motions as follows:

_ϑ � D† �u� �In×n −D†D� _ϑ⋆ for ϑ⋆ ∈ Rn (40)

VII. Singularity Analysis of Adaptive Singularity-Free
Control Moment Gyroscope Cluster

Expressions for the angular momentum contribution from an

ASCMG cluster and the time derivative of this angular momentum

are provided here. As can be seen from these expressions, the

“control influence” matrices are nonsingular for n ≥ 3 when either
this angular momentum or its time derivative are considered as

control inputs, under simple and easy-to-satisfy conditions on the

gimbal axis orientations. This shows that, with as few as three of

these CMGs, one can obtain a desired output angular momentum

or output torque from the CMGs, provided that angular rate

and angular acceleration constraints on the gimbal and rotor

are satisfied.
Consider n CMGs, satisfying assumption 2 in Sec. II, in which

case the angular momentum contribution of each CMG can be

simplified from that given by Eq. (28). Let Jkg1 denote the inertia of
the gimbal frame of the kth CMGabout the gimbal axis (its symmetry

axis), and let Jkr � diag�Jkr1; Jkr2; Jkr1� denote the inertia matrix of the

axisymmetric rotor of the kth CMG, where k � 1; : : : ; n for n ≥ 3.
Then, Eq. (28) for the momentum output of the CMGs in the

base-body coordinate frame specializes to

D�ϑ� _ϑ� E�ϑ�C � u;

where D�ϑ� �
h
D1�α1�kD2�α2�k · · · kDn�αn�

i
∈ R3×n

E�ϑ� �
h
J1r2η

1�α1�kJ2r2η2�α2�k · · · kJnr2ηn�αn�
i
∈ R3×n

Dk�αk� � �Jk1 �mk
rσ

2
k�gk �mk

rσk�ρkg�×�gk�×ηk�αk�
and Jk1 � Jkg1 � Jkr1 (41)

The following result easily follows from the structure of thematrix
D in the preceding expression.
Theorem 1: For a spacecraft with three or more CMGs (n ≥ 3)

satisfying assumption 2 as stated earlier, the control influence matrix
D�ϑ� defined by Eq. (41) has full rank if

Jk1 �mk
rσ

2
k �mk

rσk�ρkg�Tηk�αk� ≠ 0; �ρkg�Tgk � 0 (42)

and gk span R3 for k ∈ f1; : : : ; ng.
Proof: The expression for Dk�αk� in Eq. (41) can be simplified to

Dk�αk� �
�
Jk1 �mk

rσ
2
k �mk

rσk�ρkg�Tηk�αk�
�
gk

−mk
rσk

�
�ρkg�Tgk

�
ηk�αk� (43)

using the vector triple product identity. Therefore, if the relations in
Eq. (42) hold, thenDk�αk� is parallel togk.Without loss of generality,
let g1, g2, and g3 span R3. Then, the vectors Dk�αk� for k � 1, 2, 3
span R3, and D�ϑ� has full rank. □

The momenta of the general ASCMG model in Eq. (27) can be
further reduced to that of the traditional CMG model by imposing
assumptions 1–4, in sequence. The resulting simplified momenta
expression for that of a traditional CMG is obtained as

u � _θJr2η�α� (44)

The time derivative of u�t�, which is part of the control torque on
the spacecraft due to the simplifiedVSCMG, is evaluated under these
assumptions. This is evaluated to be

τu � du

dt
� �θJr2η�α� � _α _θ Jr2g

×η�α� (45)

which shows that, under these additional assumptions, this torque
component is on the plane normal to the gimbal axis g. Further, the
speed of the rotor _θ is kept constant as in a standard CMG. Then, the
time rate of change of uCMG is given by

τu � du

dt
� _θ _α Jr2g

×η�α� � κ _αg×η�α� (46)

where κ � _θJr2 is a constant scalar. This corresponds to the well-
knownmodel for standard CMGswhere the control torque generated
is known to be normal to the gimbal and rotor axes.
Several observations can bemade as a result of the analysis leading

to this main result. It is interesting to compare the preceding result
with the corresponding result for the generalized VSCMG model
given in [16]. In both cases, the generalized model that relaxes the
restrictive assumptions makes it easy to avoid singularities in the
transformation fromgimbal rates (gimbal and rotor rates in the case of
VSCMGs) to the angular momentum or torque produced on the
spacecraft bus. However, in the case of VSCMGs, only two
VSCMGs with the generalized model are required, whereas at least
three CMGs are required to achieve singularity-free control for the
spacecraft. It is also noteworthy that the preceding statement gives
only a sufficient condition for singularity-free three-axis attitude
control using CMGs. One may locate and orient the CMGs without
satisfying Eq. (42) and still be able to avoid singularities and provide
three-axis attitude control. In fact, it is clear from the preceding proof
that this can be done even if only two of theCMGs satisfy the second
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equality in Eq. (42). Theorem 1 holds even with assumption 1
because it is clear that conditions (42) are trivially satisfied if
σk � 0. However, having nonzero offsets (σk ≠ 0) between gimbal
and rotor centers of mass can provide additional control authority to
the CMGs. All of the assumptions listed in Sec. II need to hold for
singularities to appear in the relation between gimbal rates and
output momentum (or torque) for CMGs. In particular, the CMG
momentum expression given in Eq. (44) as the result of assumptions
3 and 4 is necessary for such singularities to appear. Themomentum
envelope of four such standard CMGs in pyramid configuration
with the ubiquitous skew angle of 54.73 deg leads to the singular
surface as shown in Fig. 2b because the angular momentum
component of each CMG is acting only along the rotor axis η�α� and
thus cannot span R3 along the gimbal axis. On the other hand, the
momentum envelope generated by three ASCMGs in an orthogonal
configuration spans entire R3 as shown in Fig. 2a due to the direct
contribution from gimbal momentum (cube) enclosing the rotor
momentum. These assumptions along with assumption 1 are
particularly restrictive when it comes to manufacturing CMGs,
thereby increasing the cost for manufacturing. Therefore, the design
and generalized model of the ASCMG cluster given here is useful
not only to avoid singularities (and therefore high angular rates) in
the control logic but also to decrease manufacturing costs.

VIII. Design Considerations of Adaptive
Singularity-Free Control Moment Gyroscope

In spite of a CMG’s torque amplification characteristics, the
practical application of CMGs in spacecraft attitude control is limited
only to medium and large spacecraft. Besides, the inherent problem
of kinematic singularities faced by the standardCMGdesign is due to
the simplified dynamics model, which also lead to strict constraints
on the mechanical design and manufacturing. The standard CMG
design requires ultra precision machining and balancing because of
the simplifying assumptions imposed in their dynamics model, as
stated in Sec. II. It is very challenging inmanufacturing technology to
completely align the principle axis of inertia and the axis of rotation of
a rotor. Even if the CMGs are manufactured with a high degree of
precision, it may lose its alignment after repeated usage and
eventually lead to malfunctions or even inoperability. The strict
requirement of symmetry in the CMG’s movable structures (i.e.,
axisymmetric gimbal and rotor) leads to manufacturing complexities
and increase in the total mass budget. Also, in the traditional CMG
operations, the rotor flywheels are allowed to spin at a very high
angular rate, whereas the gimbal is rotated at a very slow rate, such
that the gimbal rate is almost negligible compared to that of the rotor
rate ( _α⋘_θ). Mechanically, to achieve this condition, the CMG
gimbal frame and bearing should be rigid enough to take all the
resultant force/torque generated by the high-speed flywheel. When
the principal axes of inertia of the CMG’s high-speed flywheel

deviate from the axis of rotation, there can be radial forces that

eventually build up, leading to possible failure of the rotor drive.

A simple ASCMG hardware design is shown in Fig. 3, which is

made possible by the generalized VSCMG dynamics model

presented in [16] that is applicable to this design. Note that this design

violates some of the simplifying assumptions listed in Sec. II. The

electromechanical design presented here can be operated in both

VSCMG and CMGmodes. In traditional CMG design, the dynamics

model is often simplified, and it is compensatedwith complex design/

manufacturing constraints, whereas here with the relaxing of

assumptions in the ASCMG dynamics formulation, the mechanical

design is relatively much simpler, at the cost of a more complex

nonlinear dynamics model. The design philosophy of the ASCMG is

presented here in the following discussion.

A. Adaptability

ASCMGs are adaptive to misalignments within the hardware

design of the ASCMG and between the spacecraft-ASCMG system.

With two adaptive parameters incorporated in the general dynamics

model of ASCMG, one can manage the misalignments, without

requiring any mechanical modification to the spacecraft–ASCMG

system. These adaptive parameters are discussed as follows.
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Fig. 3 Exploded view of ASCMG showing functional components.
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1. Rotor Offset σ

The ASCMG hardware design is alignment-free, i.e., a scalar

offset σ between the rotor flywheel’s c.m. and the gimbal axis g,
along the rotor axis η is considered (σ ≠ 0). Aligning the flywheel–
gimbal system in traditional CMGdesign is considered to be a crucial

requirement for fault-free operations. This precise alignment may

falter due to manufacturing deficiencies, after extended hours of

continuous usage, and/or due to structural vibrations. Under such a
situation, a microspacecraft with traditional CMGs can lose pointing

accuracy [16], and the attitude control system will deteriorate in

performance. Although the perfect alignment assumption simplifies
the dynamics model, it considerably increases the manufacturing

complexities besides leading to kinematic singularities that have to be

accounted for in the control software. In case of an ASCMG-based
attitude control system, this misalignment is deliberately introduced

and accounted for by the control software. In addition to the

adaptability and lack of kinematic singularities, the rotor offset in the
ASCMG design can provide higher control authority [16,19,20,22].

2. Location of Adaptive Singularity-Free Control Moment Gyroscope in

Spacecraft Bus, ρg
The center of mass of a spacecraft with an ASCMG cluster can be

calibrated with limited accuracy during ground testing and can

change further in orbit due to expulsion of fuel mass or
reconfiguration. This in turn can reduce the attitude and orbit control

precision. Online c.m. estimation schemes can be employed to

estimate and update the location of the center of mass [23]. Revising
the attitude control law based on the changing c.m. is important for

precise control. The ASCMG design and associated control laws can

adapt to variations in the spacecraft c.m. location, which is accounted
for by the ρg parameter. This parameter denotes the position vector

from the c.m. of the spacecraft base body (bus) to the gimbal c.m.

B. Scalability

The traditional CMGdesign is not scalable becausemisalignments
between the c.m. of the CMG rotor and the gimbal axis cannot be

tolerated for CMGs to be used for small spacecraft (micro- and

nanosatellites). The ASCMG design and dynamics are highly
scalable because this design considers parameters that are neglected

in the traditional CMG design.

C. Asymmetric Structure

It can be noted that the VSCMG gimbal frame is not symmetric
about the gimbal axis g, such that the gimbal inertia Jg includes off-
diagonal components as well. To achieve precise axisymmetry of the

flywheel about its rotational axis η�α�, the flywheel should be
dynamically balanced. The VSCMGdynamics model presented here

does not demand such precise symmetry. Also, gimbal and rotor

inertia need not be resolved about their respective center of mass
(i.e., Jg ≠ JgCoM and Jr ≠ JrCoM). Both the gimbal- and the rotor-

fixed coordinate frames need not be their corresponding principal

axes frames, and the rotor need not be perfectly axisymmetric.

Additionally, relaxing these stringent requirements reduces the
demands on sophisticated machining and dynamic balancing, which
in turn is associated with decreased manufacturing costs.

D. Nominal Adaptive Singularity-Free Control Moment Gyroscope
Rates

Sensorless brushless dc motors of outrunner type are used here as
ASCMG direct drives (gimbal and flywheel drive). The direct drive
arrangement eliminates the effect of multiple-element torsional
oscillation system and minimizes the mass without compromising
the performance. The gimbal and flywheel angular rates are
maintained at their nominal rates, which enables the use of the back
Electromotive force sensing method for sensorless commutation and
does not require high-resolution rotational encoders as in the case of
traditional CMG gimbal drives. Mechatronics architecture of the
ASCMG cluster is given in [24].

E. Reliability

A minimalistic cluster of three ASCMGs in tetrahedron
configuration can be used for reliable three-axis attitude control
because it can be operated in both variable- and constant-speed rotor
modes. In the event of anASCMGhardware failure (gimbal/flywheel
motors or electronics), the ASCMG cluster can still perform three-
axis attitude control when operated in VSCMG mode with two
ASCMGs. A simple hybrid control law can switch the ASCMG
between VSCMG, CMG, and RW modes.
A miniature ASCMG hardware based on these design

considerations is prototyped as in Fig. 4a, which can be used for
experimental validation of the aforementioned cubesat attitude
control. A highly redundant three-ASCMG tetrahedron cluster that
can easily fit in �1∕2�U cubesat volume can be used to control a 1U to
6U cubesat, as shown in Fig. 4b, and has been prototyped using
commercial off-the-shelf components.

IX. Results and Discussion

An agile and precise spacecraft attitude pointing maneuver is
considered, with three ASCMGs (n � 3), each of mass 87 g, with
corresponding gimbal axes (g1, g2, g3) normal to the three faces of a
tetrahedron at an angle of 54 deg and the fourth face of the tetrahedron
mounted onto the spacecraft base body of mass 6 kg. The geometric
variational integrator (GVI) obtained in [16] for a spacecraft with
generalized VSCMGs gives the discrete-time evolution of the
spacecraft attitude and angular momentum:

Ri�1 � RiFi; Πb;i�1 � FT
i Πb;i � FT

i ui − ui�1 (47)

The GVI algorithm is modified appropriately for the case of a
spacecraft with three or more CMGs as follows [25].
1) Initialize Fi � exp�hΩ×

i �, ϑi�1 � h _ϑi � ϑi, and Θi�1 �
hC� Θi.
2) Compute Di�1, Ei�1, and Λi�1 as functions of ϑi�1 and Θi�1.
3) Integrate ui�1 � FT

i ui − hτcp;i.

Fig. 4 Representations of a) unit ASCMG prototype, b) prototype of three-ASCMG cluster in 1U cubesat, and c) four-ASCMG pyramid cluster.
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4) Compute �ui�1 � ui�1 − Ei�1C.
5) Update CMG gimbal rates one time step forward as

_ϑi�1 � D†

i�1 �ui�1 � �In×n −D†

i�1Di�1� _ϑ⋆

6) Obtain Πb;i�1 from Eq. (47), and Ωi�1 � Λ−1
i�1Πb;i�1.

7) Loop through steps 1 to 6 for all i.
This algorithm provides an explicit geometric variational

integrator, which is used to numerically simulate the control
problem of interest, while preserving the geometry of the
configuration space.
To demonstrate the agility, precision, and reliability of the

developed ASCMG cluster, a control objective of pointing the
spacecraft to the desired attitude for a rest-to-rest maneuver is
numerically simulated. A 1U CubeSat with three ASCMGs
providing the attitude actuation in CMGmode for the first 20 s, then
switching to theVSCMGmode at the instant of an assumed hardware
failure in one of the ASCMG units, is considered. The simulation
result shows that the fully functional ASCMG cluster, operated in
CMGmode for the first 20 s, reoriented the spacecraft from rest to the
desired attitude without singularities. With an assumed hardware
failure in one unit, the cluster of three and the control scheme switch
to operate the ASCMGs in VSCMG mode, which requires only two
functional ASCMGs to bring the spacecraft back to its initial rest
attitude, as shown in Figs. 5a and 5b. The gimbal and rotor rates for
the three ASCMGs are shown in Figs. 5c and 5d, respectively. It is to
be noted that the practical implementation of the control schemes and
ASCMG design proposed here require the application of appropriate
lower-level control inputs to the motors to implement the required
gimbal and flywheel rates. Any loss in accuracy in implementing
these required rates at the lower level will lead to corresponding loss
in performance in the higher-level attitude control scheme.

X. Conclusions

In this paper, the adaptive singularity-free control moment
gyroscope (ASCMG) is introduced, and the dynamics model of a
spacecraft with an ASCMG is derived. This dynamics model is then
generalized to a spacecraft with n ASCMGs. The ASCMG can
operate in both VSCMG and CMG modes. Sufficient conditions for
singularity-free operation of a cluster of ASCMGs in CMG mode is
presented. A functional hardware design of a three-ASCMG cluster
based on the developed design and dynamics model is prototyped.
Agility, precision, and reliability of the ASCMG cluster is

numerically validated for a cubesat. The adaptive and singularity-free
characteristics of the ASCMG cluster are demonstrated through
simulation. Experimental validation of the ASCMG prototype
developed here will be carried out in the future.
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