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4 Stable Estimation of Rigid 
Body Motion Based on the 
Lagrange–d’Alembert Principle

Amit K. Sanyal and Maziar Izadi

ABSTRACT  Stable estimation of rigid body rotational and translational motion states from 
noisy measurements, without any knowledge of the dynamics model, is treated using the 
Lagrange–d’Alembert principle from variational mechanics. With body-fixed sensor mea-
surements, a Lagrangian is obtained as the difference between a kinetic energy-like term that 
is quadratic in velocity estimation errors and an artificial potential function of configuration 
(attitude and position) estimation errors. An additional dissipation term that is linear in the 
velocity estimation errors is introduced, and the Lagrange–d’Alembert principle is applied to 
the Lagrangian with this dissipation. This estimation scheme is shown to be almost globally 
asymptotically stable in the state space of rigid body motions. It is discretized for computer 
implementation using the discrete Lagrange–d’Alembert principle, as a first-order Lie group 
variational integrator (LGVI). In the presence of bounded measurement noise in the measure-
ments, numerical simulations show that the estimated states converge to a bounded neighbor-
hood of the actual states.
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58 Multisensor Attitude Estimation

4.1  INTRODUCTION

Estimation of rigid body translational and rotational motion is indispensable for operations of space-
craft, unmanned aerial, and underwater vehicles. Autonomous state estimation of a rigid body based 
on inertial vector measurement and visual feedback from stationary landmarks, in the absence of 
a dynamics model for the rigid body, is analyzed here. This estimation scheme can enhance the 
autonomy and reliability of unmanned vehicles in uncertain GPS-denied environments. In practice, 
the dynamics of a vehicle may not be perfectly known, especially when the vehicle is under the 
action of poorly known forces and moments.

Attitude estimators using unit quaternions for attitude representation may be unstable in the 
sense of Lyapunov, unless they identify antipodal quaternions with a single attitude. This is also 
the case for attitude control schemes based on continuous feedback of unit quaternions. One 
adverse consequence of these unstable estimation and control schemes is that they end up taking 
longer to converge compared to stable schemes under similar initial conditions and initial transient 
behavior. Continuous-time attitude observers and filtering schemes on SO(3) and SE(3) do not 
suffer from kinematic singularities like estimators using coordinate descriptions of attitude, and 
they do not suffer from unwinding as they do not use unit quaternions. The maximum-likelihood 
(minimum energy) filtering method of Mortensen [1] was recently applied to attitude estimation, 
resulting in a nonlinear attitude estimation scheme that seeks to minimize the stored energy in 
measurement errors [2]. This scheme is obtained by applying Hamilton–Jacobi–Bellman (HJB) 
theory to the state space of attitude motion. Since the HJB equation can only be approximately 
solved with increasingly unwieldy expressions for higher order approximations, the resulting filter 
is only near optimal up to second order. Unlike filtering schemes that are based on approximate 
or near optimal solutions of the HJB equation and do not have provable stability, the estimation 
scheme obtained here can be solved exactly. Moreover, unlike filters based on Kalman filtering, 
the estimators proposed here do not presume any knowledge of the statistics of the initial state 
estimate or the sensor noise.

The variational attitude and pose estimation schemes recently appeared in [3,4], where they 
were shown to be almost globally asymptotically stable. The framework of variational estimation 
overcomes some of the issues encountered by competing schemes as outlined in the previous two 
paragraphs; these advantages were reported in [5]. This chapter outlines the variational estima-
tion approach for two different cases: (1) rotational (attitude) motion only, which is on the special 
orthogonal group SO(3) and (2) coupled rotational and translational motion, which is on the special 
Euclidean group SE(3).

4.2 � ATTITUDE AND ANGULAR VELOCITY ESTIMATION USING 
VECTOR AND ANGULAR VELOCITY MEASUREMENTS

Rigid body attitude is determined from j∈ known inertial vectors measured in a coordinate frame 
fixed to the rigid body. Let these vectors be denoted as l j

m for j = 1, 2, …, j, in the body-fixed frame. 
The assumption that j ≥ 2 is necessary for instantaneous three-dimensional attitude determination. 
When j = 2, the cross product of the two measured vectors is considered as a third measurement for 
applying the attitude estimation scheme. Denote the corresponding known inertial vectors as seen 
from the rigid body as dj, and let the true vectors in the body frame be denoted lj = RTdj, where R 
is the rotation matrix from the body frame to the inertial frame. This rotation matrix provides a 
coordinate-free, global, and unique description of the attitude of the rigid body. Define the matrix 
composed of all j measured vectors expressed in the body-fixed frame as column vectors,

	 L l l l l L l l lm m m m m m m m m= × = = >[ ] , [ ] ,1 2 1 2 1 22 2 when  and  whenj jj 	 (4.1)

K26956_C004.indd   58 06/14/16   6:11:33 PM



59Stable Estimation of Rigid Body Motion Based on the Lagrange–d’Alembert Principle

and the corresponding matrix of all these vectors expressed in the inertial frame as

	 D d d d d D d d d j= × = = >[ ] , [ ] .1 2 1 2 1 22 2when  and whenj j 	 (4.2)

The matrix of true body vectors lj corresponding to the inertial vectors dj, is given by

	 L R D l l l l L R D l l l= = × = = = >T Twhen  and when[ ] , [ ] .1 2 1 2 1 22 2j jj 	 (4.3)

4.2.1  Generalization of Wahba’s Cost Function

The optimal attitude determination problem for a set of vector measurements at a given time instant, 
is to find an estimated rotation matrix R∈SO(3) such that a weighted sum of the squared norms of 
the vector errors

	 s d Rlj j j
m= −  	 (4.4)

is minimized. This attitude determination problem is known as Wahba’s problem, and it is the prob-
lem of minimizing the value, with respect to R∈SO(3), of

	 r
m

j

j

n

j j
m

j j
mR L w d R l d R l0

1

1
2

( , ) ,  = −( ) −( )
=

∑ T
	 (4.5)

where the weights wj > 0, n = 3 if j = 2 and n = j if j ≥ 2. Defining the trace inner product on n n1 2×  as

	 〈 〉 =A A A A1 2 1 2, ( ),trace T 	 (4.6)

we can re-express Equation 4.5 for Wahba’s cost function as

	 r
m m mR L D RL D RL W0 1

2
( , ) , ( ) ,  = − − 	 (4.7)

where:
Lm is given by Equation 4.1
D is given by Equation 4.2
W = diag(wj) is the positive diagonal matrix of the weight factors for the measured directions

From the above expression (Equation 4.7), note that W can be any positive definite matrix, not nec-
essarily diagonal. Another generalization of Wahba’s cost function is given by

	 r
m m mR L D RL D RL W( , ) , ( ) ,  = − −






Φ

1
2

	 (4.8)

where Φ: [0,∞) ↦ [0, ∞) is a  2 function that satisfies Φ(0) = 0 and ′ >Φ ( ) 0 for all  ∈ ∞[0, ). 
Furthermore, Φ′(⋅) ≤ α(⋅) where α(⋅) is a class- function [6] and Φ′(⋅) denotes the derivative of Φ(⋅) 
with respect to its argument. Note that these properties of Φ(⋅) ensure that the indices r

mR L0( , )  and 
r

mR L( , )  have the same minimizer R∈SO(3). In other words, minimizing the cost r, which is a 
generalization of the cost r

0, is equivalent to solving Wahba’s problem. Here, W is positive definite 
(not necessarily diagonal), and D and Lm are of rank 3 when j ≥ 2 vectors are measured.
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4.2.2  Choice of Weights for Wahba’s Cost Function

In the absence of measurement errors, Lm = L = RTD, and let Q RR= ∈ T SO(3) denote the attitude 
estimation error. The following lemma specifies the weight matrix W according to the SVD of D 
and selected eigenvalues ς1, ς2, ς3 > 0 for the matrix K = DWDT.

Lemma 4.1

Let rank (D) = 3. Let the singular value decomposition of D be given by

	 D U V U V n nD D D
T

D D D: ( ), ( ), ( , ),= ∈ ∈ ∈ +Σ Σwhere O O Diag3 3 	 (4.9)

and Diag+(n1, n2) is the vector space of n1 × n2 matrices with positive entries along the main diagonal 
and all other components zero. Let σ1, σ2, σ3 denote the main diagonal entries of ΣD. Furthermore, 
let the positive definite weight matrix W be given by

	 W V W V W n nD D
T= ∈ +

0 0where Diag ( , )	 (4.10)

and the first three diagonal entries of W0 are given by

	 w w w1
1

1
2 2

2

2
2 3

3

3
2 1 2 3 0= = = >ς

σ
ς
σ

ς
σ

ς ς ς, , , , .where 	 (4.11)

Then, K = DWDT is positive definite and

	 K U UD D
T= =∆ ∆where diag( , , ),ς ς ς1 2 3 	 (4.12)

is its eigendecomposition. Moreover, if ςi ≠ ς j for i ≠ j and i, j ∈ {1, 2, 3}, then 〈I − Q, K〉 is a Morse 
function.

4.2.3 A ttitude Kinematics

Let Ω∈3 be the angular velocity of the rigid body expressed in the body-fixed frame, and  Ω  
denote its estimate. The attitude kinematics and estimated attitude kinematics, respectively, are 
given by

	 �R R R R= =× ×Ω Ω, ,�� � � 	 (4.13)

where ( ) : ( )�
× ×→ ⊂� �3 3 33so  is the skew-symmetric cross-product operator. In order to obtain atti-

tude state estimation schemes from continuous-time vector and angular velocity measurements, 
we apply the Lagrange–d’Alembert principle to an action functional of a Lagrangian of the state 
estimate errors, with a dissipation term in the angular velocity estimate error. Section 4.2 presents 
an estimation scheme obtained by using this approach.

4.2.4 A ction Functional of the Lagrangian

The energy contained in the errors between the estimated and the measured inertial vectors is given 
by r

mR L( , ) , where r
n: SO(3)× →×

 

3  is defined by Equation 4.8 and depends on the attitude 
estimate. The energy contained in the vector error between the estimated and the measured angular 
velocity is given by

	  ( , ) ( ) ( ).Ω Ω Ω Ω Ω Ω  

m m T mm= − −
2

	 (4.14)
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where m is a positive scalar. One can consider the Lagrangian composed of these energy quantities 
as follows:

	

L T U( , , , ) ( , ) ( , )

( ) ( )

R L R L

m
D R

m m m
r

m

m T m

   

 

Ω Ω Ω Ω

Ω Ω Ω Ω Φ

= −

= − − − −
2

1
2

 L D RL Wm m, ( ) .−







	 (4.15)

If the estimation process is started at time t0, then the action functional of the Lagrangian (Equation 4.15) 
over the time duration [t0, T] is expressed as

S L T U( ( , , , )) ( , ) ( , )

( ) (

R L R L t

m

m m m
r

m

t

T

m T m

   



Ω Ω Ω Ω

Ω Ω Ω

= −

= −

( )∫
0

2

d

−− − − −













∫ Ω Φ  ) , ( ) .

1
2

0

D RL D RL W tm m

t

T

d

	 (4.16)

4.2.5  Variational Estimator for Attitude and Angular Velocity

Consider attitude state estimation in continuous time in the presence of measurement noise and 
initial-state estimate errors. Applying the Lagrange–d’Alembert principle to the action functional 
S L( ( , ,R Lm

  Ω, Ωm)) given by Equation 4.16, in the presence of a dissipation term on ω := −Ω Ωm
 , 

leads to the following attitude and angular velocity filtering scheme. This estimation scheme was 
shown to be almost globally asymptotically stable in [3].

Theorem 4.1

The filter equations for a rigid body with the attitude kinematics (Equation 4.13) and with measure-
ments of vectors and angular velocity in a body-fixed frame are of the form

	

R R R

m m R L R

m

r
m

�� � � �

� � �

�

= = −

= − × + ′( ) −

=

× ×Ω Ω

Ω Φ

Ω

Γ

( ) ,

( , ) ( ) ,

ω

ω ω ω� U S D0

ΩΩm −








 ω,

	 (4.17)

where  is a positive definite filter gain matrix, R t R ( )0 0= , ω ω( )t m
0 0 0 0= = −Ω Ω , Γ( )R = 

vex Γ ΓT TR R� �−( )∈�3, Γ = DW(Lm)T, vex( ) : ( )� so 3 3→ �  is the inverse of the (⋅)× map and W is 
chosen to satisfy the conditions in Lemma 4.1.

Proof. In order to find a filter equation that reduces the measurement noise in the estimated attitude, 
one may take the first variation of the action functional (Equation 4.16) with respect to R  and  Ω . 
Consider the potential term r

mR L0( , )  as defined by Equation 4.7. Taking the first variation of this 
function with respect to R  gives

	

δ δUr
m m m T T m T

T

RL D RL W L WD R R DW L

R R

0 1
2

1
2

= − − = −

= −

×

×

   



, ( ) , ( ) ,

,

Σ

Σ Γ  

T T RΓ ΣΓ= S ( ) .

	 (4.18)
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Now consider  r
m

r
mR L R L( , ) ( , ) = ( )Φ 0 . Then,

	 δ δU U U U Sr r
m

r r
mR L R L R= ′ ( ) = ′( )Φ Φ ΣΓ

0 0 0( , ) ( , ) ( ) .  

T 	 (4.19)

Taking the first variation of the kinematic energy term associated with the artificial system (Equation 
4.14) with respect to   Ω  yields

	 δ δ ω = − − = − − + × = − + ×m m mm m( ) ( ) ( ) ( ),Ω Ω Ω Ω Ω Σ Ω Σ Σ Ω Σ� � � � �T T T� � 	 (4.20)

where ω = −Ω Ωm
 . Applying the Lagrange–d’Alembert principle leads to

δ τ ω τS U SD D+ = ⇒ − + × − ′( ) +{∫ T

t

T

T
r

m T Tt m R L R
0

0 0Σ Σ Ω Σ Φ Σ ΣΓd ( ) ( , ) ( )� � � � }} =

⇒ − + = + ′( )

∫

∫
×

t

T

T
t
T

t

T

T T
r

m T

t

m m t m R L R

0

0

0

0

0

d

dω ω ωΣ Σ Ω Φ Γ� � �U S( , ) ( ��) ,−{ }∫ τDT

t

T

t
0

Σd

	 (4.21)

where the first term in the left-hand side vanishes, since Σ(t0) = Σ(T) = 0, and after replacing the 
dissipation term τ = ω gives the second equation in Equation 4.17.

4.2.6 D iscrete-Time Variational Attitude Estimator

For onboard computer implementation, the variational estimation scheme outlined earlier has to be 
discretized. This discretization is carried out in the framework of discrete geometric mechanics, 
and the resulting discrete-time estimator is in the form of an LGVI. A variational integrator works 
by discretizing the (continuous-time) variational mechanics principle that leads to the equations of 
motion, rather than discretizing the equations of motion directly. LGVIs are variational integrators 
for mechanical systems whose configuration spaces are Lie groups, such as rigid-body systems. 
In addition to maintaining properties arising from the variational principles of mechanics, such 
as energy and momenta, LGVI schemes also maintain the geometry of the Lie group, that is, the 
configuration space of the system.

Consider an interval of time [ , ]t T0 ∈ +
  separated into N equal-length subintervals [ti, ti+1] for 

i = 0, 1, …, N, with tN = T and ti+1 − ti = Δt is the time step size. Let ( , )Ri i� � �Ω ∈ ×SO(3) 3 denote 
the discrete state estimate at time ti, such that ( , ) ( ( ), ( ))R R t ti i i i

   Ω Ω≈  where ( ( ) ( ))R t t ,Ω  is the exact 
solution of the continuous-time filter at time t ∈ [t0, T], Di

n∈ ×


3  is the set of inertial vectors and 
Li

m n∈ ×


3  is the corresponding set of measured body vectors observed at time ti, and Wi is the corre-
sponding diagonal matrix of weight factors. It is assumed that these measurements are obtained in 
discrete-time at a sufficiently high but constant sample rate. The weights in Wi can be chosen such 
that Ki is always positive definite with distinct (perhaps constant) eigenvalues, as in the continuous-
time filter given by Theorem 4.1. The following statement gives the discrete-time filter equations, 
in the form of a LGVI, corresponding to the continuous-time filter given by Theorem 4.1.

Theorem 4.2

Let two or more vector measurements be available, along with angular velocity measurements 
in discrete-time, at time intervals of length Δt. Furthermore, let the weight matrix Wi for the set 
of vector measurements Di be chosen such that K D W Di i i i

T=  satisfies the eigendecomposition 
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condition (Equation 4.12) of Lemma 4.1. A discrete-time filter that approximates the continuous-
time filter of Theorem 4.1 to first order in Δt is

	

R R t R t

m t

i i i i i
m

i

i i

   



+
× ×

+ +

= = −( )
= −

1

1

exp( ) exp ( ) ,

exp(

∆ Ω ∆ Ω

∆ Ω

ω

ω 11 3 3
0

1 1 11

×
× + + +− + ′( ){ }+) ( ) ( , ) ( ) ,mI t t R L Ri r i i

m
i

i

i∆ ∆ Φ

Ω

ΓD U Sω  

 == −














Ωi
m

iω ,

	 (4.22)

where Γ Γ Γi R R Ri i
T

i i
T

i( ) ( )� � � �= − ∈vex 3, Γi i i i
m TD W L= ∈ ×( ) 

3 3, and ( , )R� � �0 0
3Ω ∈ ×SO(3)  are initial 

estimated states.

4.2.7 N umerical Simulations

This section presents numerical simulation results of the discrete time estimator presented in 
Section 2.6, which is a first-order LGVI. The estimator is simulated over a time interval of T = 300 s, 
with a time stepsize of Δt = 0.01 s. The rigid body is assumed to have an initial attitude and angular 
velocity given by

	 R0 0
4

3
7

6
7

2
7 60

= ×





 = × −



























×

expm andSO(3)

Tπ π
, [Ω 22 11 2 1 1. . . ] .− T rad/s

The inertia scalar gain is m = 100 and the dissipation matrix is selected as the following positive 
definite matrix:

	  = ( )diag T[ ] .12 13 14

Φ(⋅) could be any C2 function with the properties described in Section 2.1, but is selected to be Φ( ) =  
here. W is selected based on the measured set of vectors D at each instant, such that it satisfies the 
conditions in Lemma 4.1. The initial estimated states have the following initial estimation errors:

	 Q0 0
2 5

3
7

6
7

2
7

0 0= ×





 =



























×

expm andSO(3)

Tπ ω
.

, [ . 001 0 002 0 003. . ] .− T rad/s 	 (4.23)

We assume that there are at most nine inertially known directions that are being measured by the sen-
sors fixed to the rigid body at a constant sample rate. The number of observed directions is taken to be 
variable over different time intervals. The dynamics equations produce the true states of the rigid body, 
assuming a sinusoidal force is applied to it. These true states are used to simulate the observed direc-
tions in the body-fixed frame, as well as the comparison between true and estimated states. Bounded 
zero mean noises are considered to be added to the true quantities to generate each measured compo-
nent. A summation of three sinusoidal matrix functions is added to the matrix L = RTD, to generate a 
measured Lm with measurement noise. The frequency of the noise signals are 1, 10, and 100 Hz, with 
different phases and amplitudes up to 2.4°, based on coarse attitude sensors such as sun sensors and 
magnetometers. Similarly, two sinusoidal noise signals of 10 Hz and 200 Hz frequencies are added 
to Ω to form the measured Ωm. These signals also have different phases and their magnitude is up to 
0.97/s, which is close to the real noise levels for coarse rate gyros. In order to integrate the implicit 
set of equations in Equation 4.22 numerically, the first equation is solved at each sampling step, 
then the result for Ri+1 is substituted in the second one. Using the Newton–Raphson method, the 
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resulting equation is solved with respect to ωi+1 iteratively. The root of this nonlinear equation 
with a specific accuracy along with the Ri

 +1 is used for the next sampling time instant. This pro-
cess is repeated to the end of the simulation time. Using the aforementioned quantities and the 
integration method, the simulation is carried out. The principal angle ϕ corresponding to the rigid 
body’s attitude estimation error Q is depicted in Figure 4.1. Components of the estimation error 
ω in the rigid body’s angular velocity are shown in Figure 4.2. All the estimation errors are seen 
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FIGURE 4.2  Angular velocity estimation error.
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FIGURE 4.1  Principal angle of the attitude estimation error.
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to converge to a neighborhood of (Q, ω) = (I, 0), where the size of this neighborhood depends on 
the bounds of the measurement noise.

4.3 � POSE AND VELOCITIES ESTIMATION USING 
OPTICAL AND INERTIAL SENSORS

Consider a vehicle in spatial (rotational and translational) motion. Onboard estimation of the pose of 
the vehicle involves assigning a coordinate frame fixed to the vehicle body, and another coordinate 
frame fixed in the environment that takes the role of the inertial frame. Let O denote the observed 
environment and S denote the vehicle. Let S denote a coordinate frame fixed to S and O be a coordi-
nate frame fixed to O, as shown in Figure 4.3. Let R ∈ SO(3) denote the rotation matrix from frame 
S to frame O and b denote the position of origin of S expressed in frame O. The pose (transforma-
tion) from body fixed frame S to inertial frame O is then given by

	 g =








 ∈

R b

0 1
SE(3).	 (4.24)

Consider vectors known in inertial frame O measured by inertial sensors in the vehicle-fixed frame 
S; let β be the number of such vectors. In addition, consider position vectors of a few stationary 
points in the inertial frame O measured by optical (vision or lidar) sensors in the vehicle-fixed 
frame S. Velocities of the vehicle may be directly measured or can be estimated by linear filtering of 
the optical position vector measurements. Assume that these optical measurements are available for 
j points at time t, whose positions are known in frame O as pj, j t∈ ( ), where  ( )t  denotes the index 
set of beacons observed at time t. Note that the observed stationary beacons or landmarks may vary 
over time due to the vehicle’s motion. These points generate 

 
( )j2  unique relative position vectors, 

which are the vectors connecting any two of these landmarks. When two or more position vectors 
are optically measured, the number of vector measurements that can be used to estimate attitude 
is ( )j2 + β. This number needs to be at least two (i.e., ( )j2 2+ ≥β ) at an instant, for the attitude to be 
uniquely determined at that instant. In other words, if at least two inertial vectors are measured at 
all instants (i.e., β ≥ 2), then beacon position measurements are not required for estimating attitude. 
However, at least one beacon or feature point position measurement is still required to estimate the 
position of the vehicle.

X

Y

Z

y

x

z

b

pj

sk

Frame O := {X, Y, Z}

Frame S := {x, y, z}

S

O

aj

qj
k

FIGURE 4.3  Inertial landmarks on O as observed from vehicle S with optical measurements.
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4.3.1  Pose Measurement Model

Denote the position of an optical sensor and the unit vector from that sensor to an observed beacon 
in frame S as sk ∈3 and uk ∈2, k =1, , k, respectively. Denote the relative position of the jth 
stationary beacon observed by the kth sensor expressed in frame S as qj

k . Thus, in the absence of 
measurement noise

	 p R q s b Ra b j tj j
k k

j= + + = + ∈( ) , ( ), 	 (4.25)

where a q sj j
k k= +  are positions of these points expressed in S. In practice, the aj is obtained from 

range measurements that have additive noise; we denote as aj
m the measured vectors. In the case of 

lidar range measurements, these are given by

	 a q s u s j tj
m

j
k m k

j
k m k k= + = + ∈( ) ( ) , ( ),� I 	 (4.26)

where ( ) j
k m is the measured range to the point by the kth sensor. The mean of the vectors pj and aj

m 
are denoted as p and a m, respectively, and satisfy

	 a R p bm = − +T( ) ,ς 	 (4.27)

where 

	 p pj

j

=
=

∑1

1

j

j

, a am
j
m

j

=
=

∑1

1

j

j

and ς is the additive measurement noise obtained by averaging the measurement noise vectors for 
each of the aj. Consider the ( )j2  relative position vectors from optical measurements, denoted as 
dj = pλ − pℓ in frame O and the corresponding vectors in frame S as lj = aλ − aℓ, for λ, ( )∈  t , 
λ ≠ ℓ. The β measured inertial vectors are included in the set of dj, and their corresponding mea-
sured values expressed in frame S are included in the set of lj. If the total number of measured vec-
tors (both optical and inertial), ( )j2 2+ =β , then l3 = l1 × l2 is considered a third measured direction 
in frame S with corresponding vector d3 = d1 × d2 in frame O. Therefore,

	 d Rl D RLj j= ⇒ = ,	 (4.28)

where D = [d1 … dn], L l ln
n= ∈ ×[ ]1

3� �  with n = 3 if 
	
( )j2 2+ =β  and n = +( )j2 β if ( )j2 2+ >β . Note 

that the matrix D consists of vectors known in frame O. Denote the measured value of matrix L in 
the presence of measurement noise as Lm. Then,

	 L R Dm = +T ,	 (4.29)

where ∈ ×


3 n consists of the additive noise in the vector measurements made in the body frame S.

4.3.2  Velocities Measurement Model

Denote the translational velocity of the rigid body expressed in body fixed frame S by ν. Therefore, 
one can write the kinematics of the rigid body as
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�
� � �Ω Ω Ω Ω=

=






⇒ = =









 ∈ =






×
∨ ∨

×R

b R

,
,

ν
ξ ξ

ν
ξ

ν
g g where and6

0 0 
 .	 (4.30)

For the initial development of the motion estimation scheme, it is assumed that the velocities are 
directly measured. The estimator is then extended to cover the cases where: (1) only angular veloc-
ity is directly measured and (2) none of the velocities are directly measured.

4.3.3  Kinematics of Pose Estimation Error

Denote the estimated pose and its kinematics as

	 g g g�
� �

� � �=












∈ =
∨R b

0 1
SE(3)

.

, ,ξ 	 (4.31)

where ξ  is rigid body velocities estimate, with g 0 as the initial pose estimate and the pose estimation 
error as

	 h gg= = −











=








 ∈

−


1

0 1 0 1
Q b Qb Q x

SE(3), 	 (4.32)

where x b Qb= −  . Then one obtains, in the case of perfect measurements,

	 � � � �
�h h g
g

= =








 = −( )∨ϕ ϕ ξ ξ

ω
υ

ξ ξ, ( , , ) ,where Adm m 	 (4.33)

where Adg
b

=








×


 

0
 for g

b
=












0 1

.

4.3.4 A ction Functional of the Lagrangian

Consider the sum of rotational and translational measurement residuals between the measurements 
and estimated pose as a potential energy-like function. The rotational potential function is expressed 
as Equation 4.8. Consider the translational potential function

	 t
m ma p y y p Ra b( , , ) ,g� � �= = − −1

2
1
2

2

κ κT 	 (4.34)

where p is defined by Equation 4.27, y y a p p Ra bm m≡ = − −( , , )g� � �  and κ is a positive scalar. 
Therefore, the total potential function is defined as the sum of Equation 4.8 for attitude determina-
tion on SO(3), and the translational energy (Equation 4.34) as

	
  ( , , , , ) ( , , ) ( , , )

,( )

g g g� � �

� �

L D a p L D a p

D L D L

m m
r

m
t

m

m m

= +

= − −Φ 1
2

R R WW p a m





 + − −1

2
2κ � � � �R b .

	 (4.35)
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Define the kinetic energy-like function:

	  ϕ ξ ξ ϕ ξ ξ ϕ ξ ξ( , , ) ( , , ) ( , , ),g g g     

m m m( ) = 1
2

T 	 (4.36)

where ∈ >×


6 6 0 is an artificial inertia-like kernel matrix. Note that in contrast to rigid body iner-
tia matrix,  is not subject to intrinsic physical constraints like the triangle inequality, which dictates 
that the sum of any two eigenvalues of the inertia matrix has to be larger than the third. Instead, 
 is a gain matrix that can be used to tune the estimator. For notational convenience, ϕ ξ( , ,g 

m ξ) is 
denoted as φ from now on; this quantity is the velocities estimation error in the absence of measure-
ment noise. Now define the Lagrangian

	 L T U( , , , , , ) ( ) ( , , , , ),g g L D a p L D a pm m m mϕ ϕ= − 	 (4.37)

and the corresponding action functional over an arbitrary time interval [t0, T] for T > 0,

	 S L L( , , , , , ) ( , , , , , ) ,g g L D a p L D a p tm m m m

t

T

ϕ ϕ( ) = ∫ d

0

	 (4.38)

such that g g  

.

ξ= ∨( ) . The following statement gives the form of the Lagrangian when perfect (noise-
free) measurements are available, and derives the variational estimator for rigid body pose and 
velocities.

Lemma 4.2

In the absence of measurement noise, the Lagrangian is of the form

	 ( , , , ) , ,h D p I Q K y yT Tϕ ϕ ϕ κ= − 〈 − 〉( ) −1
2

1
2

 Φ 	 (4.39)

where K = DWDT and y y p Q x I Q pT T≡ = + −( , ) ( )h .

Proof. Suppose that all the measured states are noise free. Therefore, one can replace Lm = L, a am =  
and ξm = ξ. The rotational potential function (Equation 4.7) can be replaced by

	

r
m m T T

T T

D D RL D RL W D Q D D Q D W

I Q I Q

0 1
2

1
2

1
2

( , ) , ,

,

h = − −( ) = − −( )

= − −( )

 

DDWD I Q KT = − , ,

	 (4.40)

since RE Q DT
 =  for the noise-free case. In addition,

	 y p p Ra b p Ra b p Q Ra Q b x Q x I Q pm( , ) ( ) ( ) .h = − − = − − = − − − = + −� � � � T T T T 	 (4.41)
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The translational potential function in the absence of measurement noise can be expressed as

	 t p y y( , ) .h = 1
2

κ T 	 (4.42)

Therefore, the total potential energy function is

	     ( , , ) ( , ) ( , ) ( , ) ( , ) ,h h h h hD p D p D p I Q Kr t r t= + = ( ) + = 〈 − 〉( ) +Φ Φ0 1
2

κκy yT ,	 (4.43)

and the kinetic energy function is

	  ( ) .ϕ ϕ ϕ= 1
2

T 	 (4.44)

Substituting Equations 4.43 and 4.44 into:

	 L T U T U U( , , , ) ( ) ( , , ) ( ) ( , ) ( , ),h h h hD p D p D pr tϕ ϕ ϕ= − = − ( ) −Φ 0 	 (4.45)

gives the Lagrangian (Equation 4.39) for the noise-free case.

4.3.5  Variational Estimator for Pose and Velocities

The nonlinear variational estimator obtained by applying the Lagrange–d’Alembert principle to the 
Lagrangian (Equation 4.37), with a dissipation term linear in the velocities estimation error, is given 
by the following statement. This estimation scheme was shown to be almost globally asymptotically 
stable in the recent work [4].

Theorem 4.3

The nonlinear variational estimator for pose and velocities is given by

	

J J D� �
�

� � �

�

ϕ ϕ ϕ

ξ ϕ

ϕ= − −

= −
⋅

=





∗

∨

−

ad

Ad

Z L D a pm m

m

( , , , , ) ,

,

( ) ,

g

g g

g
ξ

ξ

1









	 (4.46)

where ad adζ ζ
∗ = ( )T with adζ defined by Equation 4.49, and Z L D a pm m( , , , , )g  is defined by

	 Z L D a p
L D S R p y

y

m m r
m

( , , , , )
( , , ) ( )

,g
g



 

=
′( ) +











×Φ Γ 0 κ

κ
	 (4.47)

where r
mL D0( , , )g  is defined as (Equation 4.7), ∈ >×



6 6 0, y y a p p Ra bm m≡ = − −( , , )g    and

	 S R R R DW L R RL WD
T T m T T m T

Γ Γ Γ( ) ( ) .    = −( ) = −( )vex vex 	 (4.48)
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Proof. A Rayleigh dissipation term linear in the velocities of the form ϕ is used in addition to the 
Lagrangian (Equation 4.39), and the Lagrange–d’Alembert principle from variational mechanics 
is applied to obtain the estimator on TSE(3). Reduced variations with respect to h and φ [7] are 
applied, given by

	 δ η δϕ η η η
ρ

ϕ ζh h= = + =








 =










∨ ∨
× ×

× ×
, , ad where and ad

Σ
0 0

0w
v w

 ,	 (4.49)

for η
ρ

=








 ∈

Σ


6 and ζ =








 ∈

w
v



6, with η(t0) = η(T) = 0. This leads to the expression:

	 δ ϕ η ϕϕh, ( , , , ) .S L h D p t
t

T

( ) = ∫ T d

0

 	 (4.50)

Note that the variations of the attitude and position estimation errors are of the form

	 δ δ ρQ Q x Q= =×Σ , ,	 (4.51)

respectively. Applying reduced variations to the rotational potential energy term (Equation 4.40), 
one obtains

	 δQ r KD Q K KQ Q K S Q 0 1
2

( , ) , , ( ) ,h = 〈− 〉 = − =× ×Σ Σ ΣT T 	 (4.52)

where

	 S Q KQ Q KK ( ) .= −( )vex T 	 (4.53)

Taking first variation of the translational potential energy term (Equation 4.42) with respect to 
Q and x yields:

	 δ κ δ δ κ ρh ht p x Qp x Q I p y p y( , ) ( ) ( ) .= + + − = +( ){ } ×T T TΣ 	 (4.54)

Therefore, the first variation of Equation 4.43 with respect to estimation errors is

	 δ ηh h h ( , , ) ( , , ) ,D p Z D p= T 	 (4.55)

where Z D p( , , )h  is defined by

	 Z D p
I Q K S Q p Q x I Q p

Q x I Q p

K
( , , )

, ( ) ( )

{ ( ) }
h =

′ 〈 − 〉( ) + + −

+ −





{ }×Φ κ

κ

T T

T T








.	 (4.56)

Taking the first variation of the kinetic energy term (Equation 4.44) with respect to ϕ results in

	 δ ϕ ϕ δϕ ϕ η ηϕ ϕ ( ) ( ),= = +T T ad   	 (4.57)

applying the reduced variation for δφ as given in Equation 4.49. Therefore, the first variation of the 
action functional (Equation 4.38) is obtained as
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δ ϕ ϕ η η η

η

ϕ ϕh h h, ( , , , ) ( ) ( , , )S L D p Z D p t
t

T

t

T

( ) = + −

=

{ }∫

∫

T T

T

ad d

ad

 
0

0

ϕϕ

ϕ

ϕ ϕ ϕ η

η ϕ ϕ

∗

∗

− −( ) +

= − −( )∫

  

 

Z D p t

Z D p

t
T

t

T

( , , )

( , , )

h

h





d

ad

T

T

0

0

ddt,

	 (4.58)

applying fixed endpoint variations with η(t0) = η(T) = 0. By substituting Equation 4.58 in Equation 
4.50, one obtains

	 J J Dϕ ϕ ϕϕ= − −∗ad Z D p( , , ) .h 	 (4.59)

In order to implement this estimator using the aforementioned measurements, substitute Q D RLmT =  . 
This changes the rotational potential energy formed by the estimation errors in attitude (Equation 
4.40) to Equation 4.7. Equation 4.53 is also reformulated as

	 S Q DWD Q Q DWD DW L R R L WD S RK
m m( ) ( ) ( ( ) ( ) ) ( ).= − = − =vex vexT T T T T T

  

Γ 	 (4.60)

Finally, the second row in the matrix Z D p( , , )h  is replaced by

	
κ κ κ

κ
{ ( ) } { } { ( ) }

{

Q x I Q p Q b b p Q p RR b p b p

Ra bm

T T T T T+ − = − + − = − − +
= − −

  

  + p}.
	 (4.61)

Taking these changes into account, one could obtain the first of equations (Equation 4.46). Thus, the 
complete nonlinear estimator equations are given by (4.46).

Explicit expressions for the vector of velocities ξm can be obtained for two common cases when 
these velocities are not directly measured. These two cases are dealt with in Section 4.3.6.

4.3.6  Variational Estimator Implemented without Direct Velocity Measurements

The velocity measurements in Equation 4.46 can be replaced by filtered velocity estimates obtained 
by linear filtering of optical and inertial measurements using, for example, a second-order Butterworth 
filter. This is both useful and necessary when velocities are not directly measured. The filtered values 
ξf are then used in place of ξm to enhance the nonlinear estimator given by Theorem 4.3. Denote the 
measured vector quantity at time t by zm. A linear second-order filter of the following form is used:

	 
z z zf

n
f

n
m fz+ = −( )2 2µω ω ,	 (4.62)

where:
ωn is the natural (cutoff) frequency
μ is the damping ratio
zf is the filtered value of zm

Thereafter, zf is used in place of zm in Equation 4.46.
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4.3.6.1  Angular Velocity is Measured Using Rate Gyros
For the case that rate gyro measurements of angular velocities are available besides the j feature 
point (or beacon) position measurements, the linear velocities of the rigid body can be calculated 
using each single position measurement by rewriting Equation 4.65 as

	 ν f
j
f f

j
fa v= −×( ) ,Ω 	 (4.63)

for the jth point. Averaging the values of ν derived from all feature points gives a more reliable 
result. Therefore, the rigid body’s filtered velocities are expressed in this case as

	 ξ f

f

j
f

j

f
j
fa v

=
−



















×

=
∑

Ω

Ω1

1
j

j

( )
.	 (4.64)

4.3.6.2  Translational and Angular Velocity Measurements are not Available
In the case that both angular and translational velocity measurements are not available or accurate, 
rigid body velocities can be calculated in terms of the inertial and optical measurements. In order to 
do so, one can differentiate Equation 4.25 as follows:

	
 



 



p R a Ra b R a a a a

v a a

j j j j j j j

j j j

= + + = + +( ) = ⇒ − + =

⇒ = =

× × ×

×

Ω Ω Ων ν0 0

[ −− =I G aj] ( ) ,ξ ξ
	 (4.65)

where G a a Ij j( ) [ ]= −×  has full row rank. From vision-based or Doppler lidar sensors, one can also 
measure the velocities of the observed points in frame S, denoted vj

m. Here, velocity measurements 
as would be obtained from vision-based sensors are considered. The measurement model for the 
velocity is of the form

	 v G aj
m

j j= +( ) ,ξ ϑ 	 (4.66)

where ϑ j ∈3 is the additive error in velocity measurement vj
m. Note that v aj j=  , for j t∈ ( ). As 

this kinematics indicates, the relative velocities of at least three beacons are needed to determine 
the vehicle’s translational and angular velocities uniquely at each instant. However, when only one 
or two landmarks/beacons are measured, the estimator can propagate velocity estimates based on 
a least squares velocity determined from the available measurements. The rigid body velocities in 
both cases are obtained using the pseudo-inverse of ( )A f :

G V G V G( ) ( ) ( ) ( ), ( )

( )

( )

A V A V A

G a

G a

f f f f f f f

f

f

ξ ξ= ⇒ = =









‡ where
1



j









=

















and V( ) ,V

v

v

f

f

f

1



j

	 (4.67)

for 1, , ( ) j∈ t . When at least three beacons are measured, ( )A f  is a full column rank matrix, 
and    ‡ ( ) ( ) ( ) ( )A A A Af f f f= ( )−T T1

 gives its pseudo-inverse. For the case that only one or 
two beacons are observed, T( )A f  is a full row rank matrix, whose pseudo-inverse is given by 
   ‡( ) ( ) ( ) ( ) .A A A Af f f f= ( )−T T 1

4.3.7 D iscrete-Time Variational Pose Estimator

Let ( , )g� �i ξi ∈ ×SE(3) �6 denote the discrete state estimate at time ti, such that ( , ) ( ( ), ( ))g g 

i i i it tξ ξ ≈  
where ( ( ), ( ))g t tξ  is the exact solution of the continuous-time estimator at time t ∈ [t0, T]. Let the 
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values of the discrete-time measurements ξm, a m and Lm at time ti be denoted as ξi
m, ai

m, and Li
m, 

respectively. Furthermore, denote the corresponding values for the latter two quantities in inertial 
frame at time ti by pi  and Di, respectively.

Theorem 4.4

A first-order discretization of the estimator proposed in Theorem 4.3 is given by

	 ( ) ( ),J
t

F Fi i i
Tω × = −1

∆
  	 (4.68)

	 ( ) ( ),M t F M t b R a pt i i
T

i i i i
m

i+ = + + −+ + + + +∆ ∆ υ υ κ1 1 1 1 1
  	 (4.69)

	

( ) (J t F J tM t p b R ar i i
T

i i i i i i i
m+ = + × + ++ + + +

×
+ + +∆ ∆ ∆ ω ω υ υ κ1 1 1 1 1 1 1
  ))

( , , ) ( ),− ′( )+ + + ++∆ Φ Γt L D S Rr i i
m

i ii 0
1 1 1 11g 

	 (4.70)

	 ξ ξ ϕ

i i
m

i
i

= − −Ad
g

1 , 	 (4.71)

	 g g 



i i it+
∨=1 exp( ),∆ ξ 	 (4.72)

where M, J are positive definite matrices and   is defined in terms of the matrix J by 
 = −1 2/ [ ]trace J I J, Fi ∈ SO(3), g g ( ), ( ) ( , )t t0 0 0 0ξ ξ

( ) = , ϕ ω υi i
T

i
T T= [ ] , and S Ri iΓ ( )  is the value 

of S RΓ( )  at time ti, with S RΓ( )  as defined by Equation 4.48.

Remark 4.1
In the absence of any direct velocity measurements or only angular velocity measurements, the 
expressions provided in Section 3.6 to calculate rigid body velocities are still valid in discrete time. 
One can use the discrete-time variables introduced in this section in place of their continuous-time 
counterparts. The second-order Butterworth filter (Equation 4.62) is discretized using the Newmark-β 
method as follows:
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This method gives the filtered positions and velocities as follows:
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where zi
m and zi

f  are the corresponding value of quantities zm and zf at time instant ti, respectively. 
As with the continuous time version, ξi

m can be replaced with ξi
f  in the estimator equations in the 

absence of velocity measurements.

4.3.8 N umerical Simulations

This section presents numerical simulation results for the discrete-time estimator obtained in Section 
3.7. In order to numerically simulate this estimator, simulated true states of an aerial vehicle flying 
in a cubical volume are produced using the kinematics and dynamics equations of a rigid body. The 
vehicle mass and body inertia are taken to be mv = 420 g and Jv = [ . . . ]51 2 60 2 59 6 T g.m2, 
respectively. The resultant external forces and torques applied to the vehicle are ϕv(t) = 10−3[10 cos 
(0.1t)  2 sin (0.2t)  − 2 sin (0.5t)]T N and τv(t) = 10−6ϕv(t) N.m, respectively. The volume is assumed 
to be a cube of size 10 m × 10 m × 10 m with the inertial frame origin at its geometric center. The 
initial attitude and position of the vehicle are as follows:
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The vehicle’s initial angular and translational velocities are, respectively:

	 Ω0 00 2 0 05 01 0 05 0 15 0 03= − = −[ . ] [ . ] .. . . .rad/s and  m/sT Tν 	 (4.76)

The vehicle dynamics is simulated over a time interval of T  =  150  s, with a time stepsize of 
Δt = 0.02 s. The trajectory of the vehicle over this time interval is depicted in Figure 4.4. The fol-
lowing two inertial directions, corresponding to nadir and earth’s magnetic field directions, are 
measured by the inertial sensors on the vehicle:

	 d d1 20 0 1 01 0 975 0 2= − = −[ ] , [ . ] .T T. . 	 (4.77)
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FIGURE 4.4  Position and attitude trajectory of the simulated vehicle.
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For optical measurements, eight beacons are located at the eight vertices of the cube, labeled 1 to 8. 
The positions of these beacons are known in the inertial frame and their index (label) and relative 
positions are measured by optical sensors onboard the vehicle whenever the beacons come into the 
field of view (FOV) of the sensors. Three identical cameras (optical sensors) and inertial sensors are 
assumed to be installed on the vehicle. The cameras are fixed to known positions on the vehicle, on 
a hypothetical horizontal plane passing through the vehicle, 120° apart from each other, as shown 
in Figure 4.3. All the camera readings contain random zero mean signals whose probability distri-
butions are normalized bump functions with width of 0.001 m. The following are selected for the 
positive definite estimator gain matrices:

	
J M

r

= ( ) = ( )

=

diag diag

di

[ . . . ] , [ . . . ] ,0 9 0 6 0 3 0 0608 0 0486 0 0365

 aag diag[ . . . ] , [ . . . ] .2 7 2 2 1 5 0 1 0 12 0 14( ) = ( )t

	 (4.78)

Similar to Section 2.7, Φ( ) =  and the initial state estimates have the following values:

	 g 0 0 001 0 45 0 05 2 05 0 64 1 29= = =I , [ . ] , [ . ] .Ω . . . .rad/s and  m/sT Tν 	 (4.79)

A conic FOV of 2 × 40° is assumed for the cameras, which guarantees at least three beacons 
observed are common between successive measurements. The vehicle’s velocity vector is calcu-
lated from Equation 4.67. The discrete-time estimator (Equations 4.68 through 4.72) is simulated 
over a time interval of T = 20 s with time stepsize Δt = 0.02 s. At each measurement instant, 
(4.68) is solved using Newton–Raphson iterations to find an approximation for Fi. The remaining 
equations (all explicit) are solved consecutively to generate the estimated states. The principal 
angle of the attitude estimation error and the position estimate error are plotted in Figure 4.5. 
The components of the vehicle’s velocity estimate errors are also depicted in Figure 4.6. All 
estimation errors are shown to converge to a neighborhood of (h, φ) = (I, 0), where the size of 
this neighborhood depends on the magnitude of measurement noise.
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FIGURE 4.5  Angular and translational velocity estimation error.
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4.4  CONCLUSION

This chapter describes the variational state estimation schemes for rigid body rotational and trans-
lational motion, assuming measurements from body-fixed sensors. The sensors are assumed to pro-
vide measurements in continuous-time or at a sufficiently high frequency, with bounded measurement 
noise. An artificial kinetic energy quadratic in velocity estimation errors is defined, as well as artificial 
potential function(s): (1) a generalization of Wahba’s cost function for attitude estimation error, which 
is in the form of a Morse function on the Lie group of rigid body rotations SO(3), and (2) a quadratic 
function of the vehicle’s position estimation error. By applying the Lagrange–d’Alembert principle 
on a Lagrangian consisting of these energy-like terms and a dissipation term linear in the velocity 
estimation errors, estimators are designed on the Lie groups of rigid body motions SO(3) and SE(3). 
The continuous estimators for rotational motion only and coupled rotational and translational motions 
are discretized by applying the discrete Lagrange–d’Alembert principle to the discrete Lagrangian 
with dissipation terms linear in the velocity estimation errors. In the presence of measurement noise, 
numerical simulations show that state estimates converge to a bounded neighborhood of the true states.
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FIGURE 4.6  Principal angle of the attitude and position estimation error.
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