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Abstract Inverted Pendulum based reduced order
models offer many valuable insights into the much
harder problem of bipedal locomotion. While they
help in understanding leg behavior during walking,
they fail to capture the natural balancing ability of
humans that stems from the variable rotational inertia
on the torso. In an attempt to overcome this limita-
tion, the proposed work introduces a Reaction Mass
Biped (RMB). It is a generalization of the previously
introduced Reaction Mass Pendulum (RMP), which is
a multi-body inverted pendulum model with an exten-
sible leg and a variable rotational inertia torso. The
dynamical model for the RMB is hybrid in nature,
with the roles of stance leg and swing leg switch-
ing after each cycle. It is derived using a variational
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mechanics approach, and is therefore coordinate-free.
The RMB model has thirteen degrees of freedom,
all of which are considered to be actuated. A set
of desired state trajectories that can enable bipedal
walking in straight and curved paths are generated.
A control scheme is then designed for asymptotically
tracking this set of trajectories with an almost global
domain-of-attraction. Numerical simulation results
confirm the stability of this tracking control scheme
for different walking paths of the RMB. Additionally,
a discrete dynamical model is also provided along-
with an appropriate Geometric Variational Integrator
(GVI). In contrast to non-variational integrators, GVIs
can better preserve energy terms for conservative
mechanical systems and stability properties (achieved
through energy-like lyapunov functions) for actuated
systems.

Keywords Legged robots · Geometric control ·
Non-linear control · Discrete mechanics

1 Introduction

1.1 Background

Reduced-order models that are typically used for
humanoid gait generation include several versions of
the inverted pendulum model, such as the 2D and 3D
linear inverted pendulum models (LIPM) [13, 14], the
cart-table model [12], the variable impedance LIPM
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[31], the spring-loaded inverted pendulum (SLIP)
[1, 5], and the angular momentum pendulum model
(AMPM) [17, 18]. All these models (except [17, 18])
have limited utility for rotational maneuvers as they
represent the entire humanoid body only as a point
mass and do not characterize the significant rotational
inertia of the torso. Neglecting it causes the angular
momentum of the system about its CoM to be zero and
the ground reaction force (GRF) to be directed along
the lean line.

It has been reported that during human gait, even
at normal speed, the GRF diverges from the lean line
[4] and this may be important for maintaining bal-
ance. The Reaction Mass Pendulum (RMP) model
was introduced in [19] as a three-dimensional inverted
pendulum model with variable inertia, which could be
used as a reduced-order model for humanoid motion
that accounted for the variable inertia and angular
momentum of a humanoid body. This model consists
of an extensible “leg” pinned to the ground along with
a variable inertia “torso”.

In order to model bipedal spatial locomotion, an
extension of the Reaction Mass Pendulum (RMP)
model, developed in [4, 19, 26], is considered here.
This extension adds a swing leg to the RMP model
and it is termed the Reaction Mass Biped (RMB). The
dynamics of this biped model is necessarily hybrid
involving continuous-time stance dynamics with one
foot on the ground and discrete-time impact dynam-
ics when the swing foot hits the ground. Moreover,
while most 3D models of bipedal robots model the
rotational degrees of freedom through local coordi-
nates such as Euler angles or quaternions, we consider
a coordinate-free approach using rotation matrices.

The dynamics are developed directly through the
application of the Lagrange-d’Alembert principle, by
considering variations on the configuration manifolds.
This leads to the development of a coordinate-free
dynamical model that is valid globally and is free
from singularities. Furthermore, these coordinate-free
dynamics are discretized as well, yielding a structure
preserving discrete-time stance dynamics. Using these
discrete-time equations of motion a geometric varia-
tional integrator is developed to accurately integrate
the system’s dynamics.

On the control side, there is significant work in the
formal stabilization of 3D walking using techniques
based on controlled symmetries and Routhian reduc-
tion [6, 7, 29], and on hybrid zero dynamics [8, 9].

These methods have been extended to yaw steering
of 3D robots [28]. In contrast, this work develops a
geometric controller with a large domain of attraction.

1.2 Contributions

The main contributions of this paper with respect to
prior work are listed below:

– A novel reduced order model, called Reaction
Mass Biped, is proposed. Unlike many other pop-
ular models like LIPM, SLIP, etc., the RMB
explicitly considers a variable inertia torso and
models leg inertia.

– A Hybrid Geometric Model is developed using
variational principles directly on the configuration
manifold of the robot. The dynamics are said to be
coordinate-free and have no singularity issues.

– A discrete mechanical model of the RMB is also
developed along with a Geometric Variational
Integrator (GVI).

– Assuming full actuation, a geometric trajectory
tracking controller is developed for walking and
turning with almost-global stability properties.

1.3 Organization

This paper is organized as follows: Section 2 describes
the hybrid dynamical system model of the RMB.
Section 3 develops a discrete mechanics model of
the RMB, which is subsequently used to develop
a structure-preserving geometric variational integra-
tor. Section 4 develops motion primitives for walking
along-with a tracking controller to achieve the desired
trajectories. Section 5 provides simulation results and
discussions on the RMB walking along straight and
curved paths. Finally, Section 6 provides concluding
remarks.

2 Mathematical Model

2.1 Physical Description of the RMB Model

As shown in Fig. 1a, RMB consists of two extensible
legs whose lengths are ρ1 and ρ2 as measured from
the RMB CoM. The CoM of both the legs is assumed
to coincide with the RMB CoM. Moreover,for some
nominal length ρ0, the moment of inertia for the legs
is given by JL0. The legs can extend up to a max
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Fig. 1 A schematic of the RMB model

distance r from ρ0. The torso is made up of three
pairs (depicted in green) of reaction masses s1, s2, s3,
respectively. Each pair is arranged along an orthogonal
axis ei of the torso’s body-fixed frame. With one each
on either side of the RMB CoM, they are constrained
to move equidistantly so that the torso CoM always
coincides with the RMB CoM. In Fig. 1b, the frames
of reference used in this study are depicted and they
are defined in Table 1.We assume full actuation for the
RMB model as shown in Fig. 1c. τ1 rotates the ankle
joint at the stance foot along pitch, roll and yaw direc-
tions w.r.t. the inertial frame {I }. f1 is the force used
to extend the telescopic stance leg. τD1 ∈ R

3 rotates
torso frame {P } w.r.t the stance leg frame {L1}. Simi-
larly, τD2 ∈ R

3 rotates swing leg frame {L2} w.r.t the
torso frame {P }. Finally, us ∈ R

3 actuates the reac-
tion masses pairs on the torso. It is the motion of these
point-masses that induces variability into the torso’s
inertia.

2.2 Stance Dynamics (or) Fixed-base Robot Model

We develop a coordinate-free dynamic model for the
stance phase of the Reaction Mass Biped, as shown
in Fig. 1a, by using rotation matrices to represent the
attitudes of the two legs, R1, R2, and the torso, RP ,
along with scalars ρ1, ρ2 to represent the length of
the two legs, and si to represent the position of the
ith pair of reaction masses. Note that, there are three
pairs of reaction-masses, all of which are mutually
orthogonal. During the stance phase, the stance-leg
is assumed to be pinned to the ground. The con-
figuration manifold of the system is then given by

Qs = C × SO(3) × SO(3) × SO(3) × S × C,
with ρ1, ρ2 ∈ C = [0, r], R1, RP , R2 ∈ SO(3),
s = [

s1 s2 s3
]T ∈ S = [0, rs]× [0, rs]× [0, rs]. The

symbols used in this paper are tabulated in Table 1.
We have the following kinematic relations in the

system, Ṙ1 = R1Ω
×
1 , ṘP 1 = RP 1Ω

×
P 1, ṘP =

RP Ω×
P , Ṙ2P = R2P Ω×

2P , Ṙ2 = R2Ω
×
2 , where,

Ω1, Ω2, ΩP are the respective body angular veloci-
ties, and are related by

ΩP = ΩP 1 + R
T
P 1Ω1, where, RP 1 = R

T
1 RP , (1)

Ω2 = Ω2P + R
T
2P ΩP , where, R2P = R

T
P R2. (2)

Here, the (.)× is called the hat operator and it is
used to map angular velocities from R

3 to so(3) (the
Lie algebra of SO(3)). Next, we derive an expression
for the kinetic energy of the system, Ts : TQs → R.
We do this by first finding the position of the center-
of-mass (COM) of the stance leg, b, and the positions
of the reaction mass pairs, pi±, in the inertial frame
{I } as follows,

b = ρ1R1e3, pi± = b ± siRP ei .

The dot product of their velocities can then be respec-
tively computed as,

||ḃ||2 = ρ̇2
1 − ρ2

1Ω
T
1 (e×

3 )2Ω1 (3)

||ṗi+||2+||ṗi−||2= 2
(
||ḃ||2+ ṡ2i−s2i ΩP (e×

i )2ΩP

)
,(4)

where (·)× : R3 → so(3) is the skew operator, defined
such that x×y = x×y,∀x, y ∈ R

3. The kinetic energy
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of the system is then given by Ts = T1 + TP + T2,
where, T1, T2 are the kinetic energies of the two legs
respectively, and TP is the kinetic energy of the torso,
computed as,

T1 = 1

2
mL||ḃ||2 + 1

2
ΩT

1 JL0Ω1,

TP = 1

2
mP

(
3∑

i=1

||ṗi+||2+ ||ṗi−||2
)

+ 1

2
ΩT

P JP0ΩP ,

T2 = 1

2
mL||ḃ||2 + 1

2
ΩT

2 JL0Ω2.

Thus, the total kinetic energy of the system is,

Ts = 1

2
mρ̇2

1 +
3∑

i=1

mP ṡ2i + 1

2
ΩT

1 J1(ρ1)Ω1

+1

2
ΩT

P JP (s)ΩP + 1

2
ΩT

2 JL0Ω2, (5)

where,

J1(ρ1) = JL0+K1(ρ1), K1(ρ1)=−mρ2
1(e

×
3 )2,

JP (s) = JP0+KP (s), KP (s)=−2
3∑

i=1

mP s2i (e×
i )2.

m = 2mL+6mP ,

Remark 1 Note that, the length of the swing leg, ρ2
does not appear in the kinetic energy of the system,
and as we will consequently see, it will not appear in
the dynamics either. This is because of representing
COM of the swing leg at the hip. Moving COM loca-
tion to half-way along the leg will ensure the swing leg
length velocity appears in the kinetic energy, thereby
introducing an additional dynamical equation for ρ2.
The dynamical model and the controller developed
here can easily be extended to incorporate a variable
swing leg length, at the cost of adding another degree
of freedom and some complexity to the dynamics.
Here we treat the simpler case by assuming the swing
leg length to be constant. The swing leg’s rotation does
appear in the kinetic energy through Ω2.

Having developed an expression for the kinetic
energy, we next compute the Potential Energy, Us :
Qs → R, as,

Us = −mgρ1R
T
1 e3 · e3. (6)

Note that the negative sign arises due to our convention
of e3 being along the direction of uniform gravity.

The Lagrangian of the system Ls : TQs → R

is then given by Ls = Ts − Us . The equations of
motion can then be computed through the Lagrange-
d’Alembert principle by writing the variation of the
action integral as,

∫ (

δLs + η1 · τ1+ δρ1f1+ ηP 1 ·τD1 +
3∑

i=1

δsiusi+ ηP 2 · τD2

)

,

(7)

where the first term in the integral represents the vari-
ation of the Lagrangian, computed using the following
infinitesimal variations on SO(3),

δR1 = R1η
×
1 , η1 ∈ R

3, δΩ1 = Ω×
1 η1 + η̇1, (8)

δRP = RP η×
P , ηP ∈ R

3, δΩP = Ω×
P ηP + η̇P , (9)

δR2 = R2η
×
2 , η2 ∈ R

3, δΩ2 = Ω×
2 η2 + η̇2,(10)

and, all the other subsequent terms in the integral
representing the infinitesimal virtual work, where,

ηP 1 = ηP − RT
P R1η1, ηP 2 = η2 − RT

2 RP ηP .

For more details and illustrations of the actuators,
please refer to Fig. 1c. The dynamical equations of
motion can then be obtained by setting the above
integral to zero for all possible variations, resulting in,

mρ̈1 = −mρ1Ω
T
1 (e×

3 )2Ω1+mgeT
3 RT

1e3+f1,(11)

J1(ρ1)Ω̇1= −Ω1× J1(ρ1)Ω1 + 2mρ1ρ̇1(e
×
3 )2Ω1

+ mgρ1e
×
3 RT

1 e3 + τ1 − RT
1 RP τD1 , (12)

JP (s)Ω̇P = −ΩP × JP (s)ΩP − N(s, ṡ)ΩP

+ τD1 − RT
P R2τD2 , (13)

2mP s̈ = −L(s, ΩP ) + us, (14)

JL0Ω̇2 = −Ω2 × JL0Ω2 + τD2 , (15)

where, N(s, ṡ) = d
dt KP (s) = 4mP diag {s2ṡ2 +

s3ṡ3, s1ṡ1 + s3ṡ3, s1ṡ1 + s2ṡ2},
and, L(s, ΩP ) = ∂

∂s
( 12 ΩT

P KP ΩP ) =

2mP

⎡

⎢
⎣

s1(Ω
2
P2

+ Ω2
P3

)

s2(Ω
2
P3

+ Ω2
P1

)

s3(Ω
2
P1

+ Ω2
P2

)

⎤

⎥
⎦.
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We can rewrite the above dynamical equations
in a matrix form (useful for the impact model)
by defining qs = (

ρ1, R1, RP , s, R2
)
, and ωs =

[
ρ̇1 Ω1 ΩP ṡ Ω2

]T
.

Thus, using qs , ωs , the equations of motion can be
rewritten as

Ds(qs)ω̇s = H s(qs , ωs) + Bsus ,

where, Ds(qs) = diag(m, J1(ρ1), JP (s), 2mP I ,
JL0), and

H s(qs , ωs) =

⎡

⎢⎢⎢⎢
⎣

−mρ1Ω
T
1 (e×

3 )2Ω1 + mgeT
3 RT

1 e3
−Ω1 × J1(ρ1)Ω1 + 2mρ1ρ̇1(e

×
3 )2Ω1 + mgρ1e

×
3 RT

1 e3

−ΩP × JP (s)ΩP + 4
∑3

i=1 mP si ṡi (e
×
i )2ΩP

−L(s, ΩP )

−Ω2 × JL0Ω2

⎤

⎥⎥⎥⎥
⎦

,

Bs(qs) =

⎡

⎢⎢⎢⎢
⎣

I 0 0 0 0
0 I −RT

1 RP 0 0
0 0 I 0 −RT

P R2

0 0 0 I 0
0 0 0 0 I

⎤

⎥⎥⎥⎥
⎦

, us =

⎡

⎢⎢⎢⎢
⎣

f1
τ1
τD1

us

τD2

⎤

⎥⎥⎥⎥
⎦

.

Remark 2 Note that, the stance dynamics of the Reac-
tion Mass Biped is fully actuated due to the ankle
torque τ1 at the stance foot.

2.3 Extended Dynamics or Floating-Base Robot
Model

Having derived the stance dynamics of the Reaction
Mass Biped system, where the stance leg is pinned
to the ground, we now develop the extended model,
where the foot is no longer pinned to the ground.
This model is required to formulate the discrete-time
impact model that captures the dynamics of swing foot
impact with the ground. The extended model is illus-
trated in Fig. 2, and has the configuration manifold
Qe = R

3×SO(3)×SO(3)×S ×SO(3). The kinetic
and potential energies, Te : TQe → R,Ue : Qe → R

can be derived in a similar manner as in the stance
dynamics, resulting in,

Te = 1

2
mẋP · ẋP +

3∑

i=1

mP ṡ2i + 1

2
ΩT

1 JL0Ω1

+ 1

2
ΩT

P JP (s)ΩP + 1

2
ΩT

2 JL0Ω2, (16)

Ue = −mgxP · e3. (17)

The dynamics of motion can be obtained through
application of the Lagrange-d’Alembert principle as
outlined earlier. We will directly write this in matrix
form by first defining, qe = (

R1, RP , s, R2, xP

)
, and

ωe = [
Ω1 ΩP ṡ Ω2 ẋP

]T
, where xP is the position

of the hip in the inertial frame. We then have,

De(qe)ω̇e = H e(qe, ωe) + Be(qe)ue,

where, De(qe) = diag
(
JL0, JP (s), 2mP I, JL0 , m

)
,

H e(qe,ωe)=

⎡

⎢⎢⎢
⎣

−Ω1 × JL0Ω1

−ΩP × JP (s)ΩP + 4
∑3

i=1 mP si ṡi (e
×
i )2ΩP

−L(s, ΩP )

−Ω2 × JL0Ω2
mge3

⎤

⎥⎥⎥
⎦

,

(18)

Be(qe) =

⎡

⎢⎢⎢⎢
⎣

−RT
1 RP 0 0
I 0 −RT

P R2

0 I 0
0 0 I

0 0 0

⎤

⎥⎥⎥⎥
⎦

, ue =
⎡

⎣
τD1

us

τD2

⎤

⎦ .

(19)

Remark 3 Note that the extended dynamical model of
the reaction mass biped is under-actuated. This is in
contrast to the stance dynamical model, which is fully
actuated.

2.4 Impact Model

We will next develop the discrete-time impact model
that captures the impact of the swing foot with the
ground. The impact model results in an instantaneous
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Table 1 Enumeration of the symbolic notation used in the paper

mL ∈ R Mass of either Leg at Hip Joint

mP ∈ R Mass of Reaction masses

m ∈ R Mass of the entire system

JL0 ∈ R
3×3 Inertia matrix of either leg with respect to the body-fixed frame when leg length is its nominal value ρ0

JP0 ∈ R
3×3 Inertia matrix of the torso with respect to the body-fixed frame

{I } Inertial frame at the stance foot

{L1} Body frame of the stance leg at the hip joint

{P } Body frame of the torso at the hip joint

{L2} Body frame of the swing leg at the hip joint

ρ1 ∈ C Distance between CoM of the stance leg and its ankle

ρ0 ∈ C Constant distance between CoM of the swing leg and the hip joint

R1 ∈ SO(3) Rotation matrix of the stance leg from the body-fixed frame to the inertial frame {I}
RP ∈ SO(3) Rotation matrix of the torso from the body-fixed frame to the inertial frame {I}
R2 ∈ SO(3) Rotation matrix of the swing leg from the body-fixed frame to the inertial frame {I}
RP 1 ∈ SO(3) Rotation matrix of the torso from the body-fixed frame {P} to the stance leg body-fixed frame {L1}
R2P ∈ SO(3) Rotation matrix of the swing leg from the body-fixed frame {L2} to the torso body-fixed frame {P}
Ω1 ∈ R

3 Angular velocity of the stance leg in the body-fixed frame

Ω2 ∈ R
3 Angular velocity of the swing leg in the body-fixed frame

ΩP ∈ R
3 Angular velocity of the torso in the body-fixed frame

si ∈ S Position of the i’th reaction mass

e3 ∈ R
3 Standard unit vector along the gravity direction (downward) in the inertial frame

change in the joint velocities of the system. In order
to capture this, we will first need to map the stance
coordinates to the extended coordinates, perform the
impact in the extended coordinates, map the extended

Fig. 2 Reaction mass biped model for the extended dynamics
or the floating base case. Here, xP is the hip position while xF1,
xF2 are the stance and swing leg positions, respectively. In the
flight phase, we assume that both ρ1 = ρ2 = ρ0 i.e., both legs
don’t extend but only rotate

coordinates to the stance coordinates while account-
ing for the relabeling that occurs as the old swing leg
becomes the new stance leg.

First, to map the stance coordinates to the extended
coordinates, we need to find xP , ẋP in terms of the
stance coordinates. Since the stance foot is on the
ground, xP = ρ1R1e3. From this we obtain, ẋP =
ρ̇1R1e3+ρ1R1Ω

×
1 e3. We will write this as the follow-

ing map,

qe = Υ
q
s→e(qs), ωe = Υ ω

s→e(ωs).

For later use, we will denote the map from
the extended coordinates to the stance coordinates
(assuming the first leg’s foot is in contact with the
ground) as,

qs = Υ
q
e→s(qe), ωs = Υ ω

e→s(ωe).

This map essentially computes ρ1 from xP as, ρ1 =
||xP ||.

Next we model the impact map. By considering
(q−

e , ω−
e ) to be the state prior to impact, and (q+

e , ω+
e )
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to be the state post impact, and Fext representing the
external force, we have the following relation from
[10],

D(q+
e )ω+

e − D(q−
e )ω−

e = Fext .

Further, the swing foot position and velocity are given
as,

xF2 = xP + ρtd
2 R2e3, ẋF2 = ẋP − ρtd

2 R2(e3)
×Ω2,

where ρtd
2 is the value of ρ2 at touchdown (note that

ρtd
2 is a constant and has no dynamics since ρ2 can

instantaneously change.) We require the post impact
swing foot velocity ẋ+

F2
= 0, since this foot now

becomes the new stance foot. This can be expressed as
Aω+

e = 0, where,

A = [
0 0 0 �= −ρtd

2 R+
2 (e3)

× I
]
.

Further, denoting IR as the impact force at the swing
foot, we have Fext = AT IR . The above equations can
then be expressed in matrix form to solve for ω+

e and
IR ,

[
ω+

e

IR

]
=

[
De(q

+
e ) −AT

A 0

]−1 [ −De(q
−
e )ω−

e

0

]
.

(20)

We can then define a map Γ such that ω+
e = Γ (ω−

e ).
The impact map can then be defined by the map

Δs→s : S → T Q, where S = {xs ∈ T Qs | (ρ2R2e3−
ρ1R1e3)·e3 = 0} is the switching surface representing
the contact of the swing leg toe with the ground. We
have,

Δs→s :=
[

Δ
q
s→s

Δω
s→s

]
,

where, the components Δ
q
s→s and Δω

s→s define the
transition maps for the configuration variables and
their velocities, respectively. These are obtained from
the above equations as follows:

Δ
q
s→s := Υ

q
e→s ◦ R ◦ Υ

q
s→e,

Δω
s→s := Υ ω

e→s ◦ R ◦ Γ ◦ Υ ω
s→e,

where R represents a coordinate relabeling transfor-
mation such that the old swing leg is labeled as the
new stance leg and vice-versa.

2.5 Hybrid System Model

The hybrid model for walking is based on the stance
dynamics and the impact model developed in the pre-
vious sections, and can be represented as follows:

� :
{

Dsω̇s =H s(qs , ωs)+Bs(qs)us , (q−
s , ω−

s ) /∈ S,

(q+
s , ω+

s ) = Δs→s(q
−
s , ω−

s ), (q−
s , ω−

s ) ∈ S.

3 Discrete Mechanics and Variational Integrator
for RMB

In general, for hybrid dynamical models like the
RMB, conventional numerical integrators, based on
explicit Runge-Kutta method, are used for deter-
mining the system’s flow based on the continuous-
time Euler-Lagrange equations that were derived in
Section 2. However, this procedure results in the loss
of some fundamental geometric properties of the sys-
tem such as, inherent manifold structure, symplectic-
ity, and the momentum map. Special integrators exist
to either preserve manifold structure of the configura-
tion space [11, 16] or simplecticity [22, 33]. Recently,
Lee et al. [20, 21] integrated these two techniques and
devised Geometric Variational Integrators (GVI) that
are capable of preserving both geometry and struc-
ture of the discrete flow. In this section, we develop a
discrete mechanics model of the RMB by taking vari-
ations of the corresponding discrete action sum. The
resulting update rules form the discrete equations of
motion and they used to construct a GVI for the RMB
system.

3.1 Discrete Lagrangian

The Lagrangian is discretized with a fixed step size,
h ≥ 0, and the subscript k determines the value at
any iteration, as tk = kh. Therefore, the configu-
ration manifold of the RMB at any time tk is given
as Qs = C × SO(3) × SO(3) × SO(3) × S × C,
with configuration variables ρ1k

, ρ2k
∈ C = [0, r],

R1k
, RPk

, R2k
∈ SO(3), sk = [

s1k
s2k

s3k

]T ∈ S.
For the discrete-time kinematic relations, the linear

velocity ẋk at tk can be approximated as shown

ẋk ≈ Δxk

h
= xk+1 − xk

h
. (21)
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Similarly, from the rotational kinematic relations in
Section 2, the discrete analogue of angular velocity is

Fk = ehΩ×
k , so that Rk+1 = RkFk. (22)

Using Eqs. 22 and 21, we get the following first order
discrete equations for the RMB,

R1k+1=R1k
F1k

, RPk+1=RPk
FPk

, R2k+1=R2k
F2k

, (23)

ρ1k+1 = ρ1k
+ hρ̇1k

, sk+1 = sk+hṡk. (24)

The symbols specific to the discrete mechanics are
tabulated in Table 2. We derive the discrete versions
of both kinetic (Ts) and potential (Us) energies of the
system next. The discrete version of potential energy
Usk : Qs → R is given as Usk = −mgρ1k

eT
3 RT

1k
e3,

and the kinetic energy, defined as Tsk : TQs → R, is
given as,

Tsk = 1

2
(mρ̇2

1k
+

3∑

i=1

mP ṡ2ik + ΩT
1k

J1(ρ1k
)Ω1k

+ΩT
Pk

JP (sk)ΩPk
+ ΩT

2k
JL0Ω2k

). (25)

The discrete Lagrangian Lk approximates the path
of least action, which is obtained by integrating the
Lagrangian along the exact solution of the equations
of motion for a single time step,

Lk ≈
∫ h

0
Ldt =L(ρ1k

, sk,Ω1k
,ΩPk

, Ω2k
)h=Tsk −Usk . (26)

Substituting Eq. 25 in Eq. 26 gives

Table 2 Notations used in the discrete mechanics of RMB

F1k
∈ SO(3) Rotation matrix that shifts the stance leg from configuration R1k

to R1k+1 during kth time-step

FPk
∈ SO(3) Rotation matrix that shifts the torso from configuration RPk

to RPk+1 during kth time-step

F2k
∈ SO(3) Rotation matrix that shifts the swing leg from configuration R2k

to R2k+1 during kth time-step

Lk = h

2
[ρ̇1k

ṡk Ω1k
ΩPk

Ω2k
]T

⎡

⎢⎢⎢⎢
⎣

m

2mP I

J1(ρ1k
)

JP (sk)

JL0

⎤

⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢
⎣

ρ̇1k

ṡk
Ω1k

ΩPk

Ω2k

⎤

⎥⎥⎥⎥
⎦

+ hmgρ1k
eT
3 RT

1k
e3,

(27)

where J1(ρ1k
) = JL0 − mρ2

1k
(e×

3 )2, JP (sk) = JP0 −
2

∑3
i=1 mP s2ik

(e×
i )2. Similar to its continuous-time

counterpart, the discrete-time version of the Lagrange-
d’Alembert principle states that the action sum, which
approximates the action integral, is invariant to the
first order of all possible variations, as shown in
Eq. 28. Integrators that maintain this invariance are
called Variational Integrators. Additionally, if they
also maintain the structure of the configuration mani-
fold, they are called GVIs.

δSd =
N−1∑

k=0

δLk + δWk = 0, where N = tF − t0

h
.

(28)

Here, t0, tF are the start and end times of the inte-
gration, respectively. To compute the above, we have
to first determine the infinitesimal variations for Rk

and Ωk , as shown in [32],

δRk = lim
ε→0

Rk exp (εη×
k ) = Rkη

×
k , (29)

δFk = hδΩ×
k exp (hΩ×

k ) = hδΩ×
k Fk, (30)

=⇒ δΩ×
k = 1

h
δFkF

T
k = 1

h
((Fkηk+1)

× − η×
k ),

∴ δΩk = 1

h
((Fkηk+1) − ηk). (31)

Additionally, the variations of ρ̇1k
and ṡk are,

δ ˙ρ1k
= δρ1k+1 − δρ1k

h
, δṡk = δsk+1 − δsk

h
. (32)
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The infinitesimal virtual work done and Lagrangian
can be discretized using the discrete infinitesimal
variations obtained above as follows:

δWk = h(f1k
δρ1k

+ uT
sk

δsk + τT
1k

η1k
+ τT

D1k
ηP1k

+ τT
D2k

ηP 2k
),

δLk = h[ρ̇1k
ṡk Ω1k

ΩPk
Ω2k

]T

⎡

⎢⎢⎢
⎣

m

2mP I

J1(ρ1k
)

JP (sk)

JL0

⎤

⎥⎥⎥
⎦

⎡

⎢⎢⎢
⎣

δρ̇1k

δṡk
δΩ1k

δΩPk

δΩ2k

⎤

⎥⎥⎥
⎦

− hmρ1k
ΩT

1k
(e×

3 )2Ω1k
δρ1k

−h2mP

3∑

i=1

sik Ω
T
Pk

(e×
i )2ΩPk

δsik + hmgδρ1k
eT
3 RT

1k
e3 + hmgρ1k

eT
3 δRT

1k
e3.

(33)

Now, we map all the velocities to their corre-
sponding momentum terms and continue the rest of
this derivation in termsof the momenta. Let, pρ1k

=

mρ̇1k
, psk = 2mP ṡk, Π1k

= J1(ρ1k
)Ω1k

, ΠPk
=

JP (sPk
)ΩPk

, and Π2k
= JL0Ω2k

. Accordingly, the
discrete action sum in Eq. 28 can be rewritten using
Eq. 33 as,

δSd =
N−1∑

k=0

[ΠT
1k

δΩ1k
+ MT

k δR1k
+ ΠT

Pk
δΩPk

+ ΠT
2k

δΩ2k
+ pρ1k

(δρ1k+1 − δρ1k
) + Nkδρ1k

−hmρ1k
ΩT

1k
(e×

3 )2Ω1k
δρ1k

+
3∑

i=1

psik
(δsik+1 − δsik ) − h2mP sikΩ

T
Pk

(e×
i )2ΩPk

δsik + δWk] = 0. (34)

where, Mk = ∂Usk

∂R1k
and Nk = ∂Usk

∂ρ1k
. We can substi-

tute Eq. 33, and the variations Eqs. 29, 31, and 32 in
Eq. 34 to obtain the discrete action sum in terms of
the variations δυk := [η1k

ηPk
η2k

δρ1k
δsk]. The fact

that variations vanish at end points, i.e., δυk = 0 if
k = {0, N}, and an appropriate re-indexing of terms
allows us to reformulate Eq. 34 as,

N−1∑

k=1

[(F T
1k−1

Π1k−1−Π1k
+MT

k R1k
+ hτ1k

− hRP 1k
τD1k

)Tη1k

(F T
Pk−1

ΠPk−1 − ΠPk
+ hτD1k

− hRP 2k
τD2k

)T ηpk

+(F T
2k−1

Π2k−1 − Π2k
+ hτD2k

)T η2k

+(pρ1k−1
− pρ1k

− hmρ1k
ΩT

1k
(e×

3 )2Ω1k
+ Nk + hf1k

)δρ1k

+
3∑

i=1

(psik−1
−psik

− h2mP sik Ω
T
Pk

(e×
i )2ΩPk

+huik )δsik ]=0.(35)

Since Eq. 35 is true for any δυk , we require that the
expressions each of in the parentheses to be equal to
zero. They are indeed the discrete-time equations of
motion for the RMB in terms of the momenta. Finally,

we can map back from the momentum terms to the
velocity terms to get the equations of motion in terms
of the velocities as shown below:

J1k+1Ω1k+1 = FT
1k

(J1k
Ω1k

) + hmgρ1k+1e
×
3 RT

1k+1
e3

+hτ1k+1 − hRP 1k+1τD1k+1 , (36)

JPk+1ΩPk+1 = FT
Pk

(JPk
ΩPk

)+hτD1k+1 −hRP2k+1τD2k+1 , (37)

JL0Ω2k+1 = FT
2k

(JL0Ω2k
) + hτD2k+1 , (38)

mρ̇1k+1 = mρ̇1k
− hmρ1k+1Ω

T
1k+1

(e×
3 )2Ω1k+1

+hmgeT
3 RT

1k+1
e3 + hf1k+1 , (39)

2mP ṡk+1 = 2mP ṡk − hL(sk+1,ΩPk+1 ) + huk+1. (40)

The discrete-time Lagrangian flow map
takes us from (Ω1k

ΩPk
Ω2k

ρ̇1k
ṡk) 
→

(Ω1k+1 ΩPk+1 Ω2k+1 ρ̇1k+1 ṡk+1), and this process is
repeated for N steps. Note that, unlike in [20, 21],
this is an explicit method and doesn’t require custom
Rodrigues formula-based gradient descent methods,
and is therefore faster.
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3.2 Advantages of Geometric Variational Integrators
are listed below

1. GVIs preserve important mechanical properties like
energy conservation (for conservative systems),
momentum conservation (where there is symme-
try), while ensuring that the dynamics evolves in
the configuration manifold of the system.

2. They can be easily implemented in hardware and
the equations are inherently discrete-time.

3. This structure preserving property is also useful
when building controllers based on energy-like
Lyapunov functions, as shown in this work.

4. Moreover, the performance does not degrade even
for long simulation times.

4 Actuation and Controlled Motion

4.1 Motion Planning for Moving between Ground
Locations

Consider a trajectory connecting two ground points
with known initial and final velocities; there are
many ways to generate this trajectory while avoid-
ing fixed obstacles. The motion of the torso center
of mass, when projected on the horizontal (ground)
plane, should closely follow this generated trajectory.
Assuming that this trajectory is known a priori, a stride
length that is optimal (or natural) for the RMB is used
to determine the number of steps required to cover the
path length. If ls is the optimal stride length and pl

is the path length of the trajectory, then the nearest
integer to pl/ ls can be used as the number of strides
required to cover this trajectory.

Desired trajectories (motion primitives) for vari-
ables associated with the RMB legs in time interval
[0, T ] are:

ρd
1 = ρ0 + ρ̄ sin(ωt), ω = π

T
, ρ0 > ρ̄ > 0,

Rd
1 = R10 exp

(
ζ×
1 sin(ωt/2)

)
,

ρd
2 = ρ0,

Rd
2 = R20 exp

(
ζ×
2 sin(ωt/2)

)
. (41)

Note that the constant vectors ζ1, ζ2 ∈ R
3 for the leg

rotations could be equal, and something similar could
be said for R10 , R20 ∈ SO(3) when the biped is stand-
ing erect. Also, ρ0 and ρ̄ are related to the optimal

stride length for the biped. The desired trajectories
for variables associated with the torso over the time
interval [0, T ] are:
Rd

P = Rd
1 exp

(
γ log

(
(Rd

1 )TRd
2

))
, γ ∈ [0, 1],

sd = s0 + s̄ sin(ωt), (42)

where s0, s̄ ∈ R
3 are designed to have the appropriate

inertia distribution for the torso as mentioned earlier
with |s0i | > |s̄i |, log : SO(3) → so(3) is the loga-
rithmmap that is inverse of the exponential map (given
by the matrix exponential), and γ is a weight factor.
Note that Rd

P = Rd
1 when γ = 0 and Rd

P = Rd
2

when γ = 1. The reasoning behind introducing these
weights is to mimic human bipedal gait, where the
body (torso) becomes more closely aligned with the
alignment of the stance leg as the speed of bipedal
motion increases. By making γ and ω time-varying,
one can even transition between different speeds of
bipedal motion. This is one of the future goals of this
research.

The stride length is given by the horizontal distance
traversed by the ankle joint of the swing leg in one
cycle. The desired stride length can be obtained from
the above desired motions for the swing leg, consid-
ering that the inertial position of the ankle/foot of the
swing leg at an instant is given by

aL2 = aL1 + ρ1R1e3 − ρ2R2e3, (43)

where aL1, aL2 denote the positions of the ankles of
the stance and swing leg, respectively. With the coor-
dinate frames as illustrated in Fig. 1 and substituting
Eq. 41 for the desired motion trajectories, the starting
and end positions of the swing leg ankle during a cycle
are:

as
L2 = aL1+ρ0R10e3 − ρ0R20e3,

ae
L2 = aL1+ρ0R10 exp(ζ

×
1 )e3−ρ0R20 exp(ζ

×
2 )e3 (44)

Therefore the stride length is given by

ae
L2 − as

L2=ρ0R10

(
exp(ζ×

1 ) − I
)
e3 + ρ0R20

(
I − exp(ζ×

2 )
)
e3.

(45)

Using Rodrigues’ rotation formula, the above expres-
sion can be simplified to

vd
s = ρ0R10

{
ζ̂×
1 sin ‖ζ1‖ + (

ζ̂×
1

)2
(1 − cos ‖ζ1‖)

}
e3

−ρ0R20

{
ζ̂×
2 sin‖ζ2‖+(

ζ̂×
2

)2
(1−cos‖ζ1‖)

}
e3,

(46)
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where vd
s denotes the desired stride vector, and ζ̂1, ζ̂2

denote the unit vectors along ζ1, ζ2 respectively. This
sets the desired stride length to lds = ‖vd

s ‖. Note that
the constraint eT3 vd

s = 0 must be satisfied, which
imposes certain constraints on R10 , R20 , ζ1 and ζ2.
Substituting Eq. 46 for vd

s , this constraint is expressed
as

Γ T
10

{
ζ̂×
1 sin ‖ζ1‖ + (

ζ̂×
1

)2
(1 − cos ‖ζ1‖)

}
e3 =

Γ T
20

{
ζ̂×
2 sin ‖ζ2‖ + (

ζ̂×
2

)2
(1 − cos ‖ζ1‖)

}
e3, (47)

where Γ10 = RT
10e3, Γ20 = RT

20e3.

Expression (47) can be satisfied by setting

ζ1 = ζ2 and R20 = exp(θe×
3 )R10 , (48)

for θ ∈ S
1. The second equality in Eq. 48 guarantees

that Γ10 = Γ20 ; physically, it means that the initial
orientations of the stance and swing legs during start
of a cycle are related by a rotation about the inertial
third axis that points up.

Substituting Eq. 48 in Eq. 42 to simplify the expres-
sion for Rd

P in Eq. 42, one obtains:

(Rd
1 )TRd

2 = exp
( − c(t)ζ×

1

)
RT
10R20 exp

(
c(t)ζ×

1

)

= exp
( − c(t)ζ×

1

)
exp

(
θ(RT

10e3)
×)

exp
(
c(t)ζ×

1

)

= exp
(
θ
(
exp(−c(t)ζ×

1 )RT
10e3

)×)
, (49)

where c(t) = sin(ωt/2). The above simplification
uses the following relation multiple times:

RT exp(φe×)R = exp
(
φ(RTe)×

)
,

where e ∈ S
2 is a unit vector. This leads to the

following simplified expression for Rd
P :

Rd
P = Rd

1 exp
(
γ θ

(
exp(−c(t)ζ×

1 )RT
10e3

)×)
, (50)

which can then be expanded using Rodrigues’ for-
mula.

4.2 Trajectory Tracking Control Scheme

Define the trajectory tracking errors:

ρ̃1 = ρ1 − ρd
1 , ˙̃ρ1 = d

dt
ρ̃1,

Q1 = R1(R
d
1 )T, Ω̃1 = Ω1 − Ωd

1 ,

QP = RP (Rd
P )T, Ω̃P = ΩP − Ωd

P ,

s̃ = s − sd, ˙̃s = d

dt
s̃,

Q2 = R2(R
d
2 )T, Ω̃2 = Ω2 − Ωd

2 . (51)

The trajectory tracking control scheme is a general-
ization of the control scheme in [26]. The Lyapunov
function candidate for the stance leg is:

VL1(ρ1, ρ̃1,Q1, ˙̃ρ1, Ω̃1) = 1

2
m ˙̃ρ2

1 + 1

2
Ω̃T

1 J1(ρ1)Ω̃1 + 1

2
kρ̃2

1

+Φ
(
tr(A − AQ1)

)
, (52)

where k > 0, A = diag(a1, a2, a3) with a1 > a2 >

a3 > 0, and Φ : R → R is a C2 function that satisfies
Φ(0) = 0 andΦ ′(x) > 0 for all x ∈ R

+. Furthermore,
letΦ ′(·) ≤ α(·), where α(·) is a Class-K function [15].
The Lyapunov function candidate for the torso of the
RMB is:

VP(QP, Ω̃P, s, s̃, ˙̃s)= 1

2
Ω̃T

P JP(s)Ω̃P + mP
˙̃sT ˙̃s+ 1

2
s̃TP s̃

+Φ
(
tr(A − AQP )

)
. (53)

The Lyapunov function candidate for the swing leg is:

VL2(Q2, Ω̃2) = 1

2
Ω̃T

2 JL0Ω̃2+Φ
(
tr(A−AQ2)

)
, (54)

where JL0 is the inertia of swing leg at its nomi-
nal length (ρ0), which is kept constant during swing
phase, and P,Q1, QP , Q2 are suitable positive def-
inite matrices that are use to build valid Lyapunov
functions. The time derivative of these Lyapunov func-
tions along the stance dynamics of the RMB system
are evaluated next.

The time derivative of VL1 along dynamics
Eqs. 11–12 is:

d

dt
VL1 (ρ1, ρ̃1,Q1, ˙̃ρ1, Ω̃1) = ˙̃ρ1

[
f1 − mρ1Ω

T
1

(
e×
3

)2
Ω1 + mgeT3 Γ1 − mρ̈d

1 + kρ̃1

]

+Ω̃T
1

[
− Ω1 × J1(ρ1)Ω1 + 2mρ1ρ̇1

(
e×
3

)2
Ω1 + mgρ1e

×
3 Γ1 + τ1 − RT1 RP τD1

−J1(ρ1)Ω̇
d
1 − mρ1ρ̇1

(
e×
3

)2
Ω̃1 + Φ ′(tr(A − AQ1)

)
(Rd

1 )TS(Q1)
]
,
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where Γ1 = RT
1 e3 is the inertial z-axis direction (up)

in the stance leg’s body-fixed frame and S : SO(3) →
R
3 is defined by

S(Q) =
3∑

i=1

aiQ
Tei × ei . (55)

After some partial cancellations of terms, this
expression can be rewritten as

d

dt
VL1(ρ1, ρ̃1, Q1, ˙̃ρ1, Ω̃1) = ˙̃ρ1

[
f1 − mρ̈d

1 − mρ1Ω1
(
e×
3

)2
Ω1 + mgeT3 Γ1 + kρ̃1

]

+Ω̃T
1

[
τ1 − RT

1 RP τD1 − Ωd
1 × J1(ρ1)Ω1 + mρ1ρ̇1

(
e×
3

)2(
Ω1 + Ωd

1

)

+mgρ1e
×
3 Γ1 + Φ ′(tr(A − AQ1)

)
(Rd

1 )TS(Q1)
]
. (56)

The time derivative of VP along the dynamics
Eqs. 13–14 is:

d

dt
VP (QP , Ω̃P , s, s̃, ˙̃s) = Ω̃T

P

[
JP (s)ΩP × ΩP + τD1 − N(s, ṡ)ΩP − RT

P R2τD2

−JP (s)Ω̇d
P + 1

2
N(s, ṡ)Ω̃P + Φ ′(tr(A − AQP )

)
(Rd

P )TS(QP )
]

+˙̃sT
[
L(s,ΩP ) − 2mP s̈d + P s̃ + us

]
, (57)

where N(s, ṡ) = d
dt KP (s) and ṡTL(s, ΩP ) =

1
2Ω

T
P N(s, ṡ)ΩP . After some partial cancellation of

terms, one can simplify expression Eq. 57 to

d

dt
VP (QP , Ω̃P , s, s̃, ˙̃s) = Ω̃T

P

[
τD1 − RT

P R2τD2 − JP (s)Ω̇d
P − Ωd

P × JP (s)ΩP

−1

2
N(s, ṡ)

(
ΩP + Ωd

P

) + Φ ′(tr(A − AQP )
)
(Rd

P )TS(QP )
]

+˙̃sT
[
us + L(s, ΩP ) − 2mP s̈d + P s̃

]
. (58)

Finally, the time derivative of VL2 along dynamics
Eq. 15 is

d

dt
VL2 (Q2, Ω̃2) = 1

2
Ω̃T

2

(
− Ωd

2 × JL0Ω2 + τD2 − JL0Ω̇
d
2

+Φ ′(tr(A − AQ2)
)
(Rd

2 )TS(Q2)
)
. (59)

Theorem 1 Let � > 0 and let D1, DP , D2, P , Q ∈
R
3×3 be positive definite matrices. Then the tracking

control laws

f1 = mρ̈d
1 + mρ1Ω

T
1

(
e×
3

)2
Ω1 − mgeT3 Γ1 − kρ̃1 − � ˙̃ρ1, (60)

τ1 = RT
1 RP τD1 + J1(ρ1)Ω̇

d
1 + Ωd

1 × J1(ρ1)Ω1 − mgρ1e
×
3 Γ1

−mρ1ρ̇1
(
e×
3

)2(
Ω1 + Ωd

1

) − Φ ′(tr(A − AQ1)
)
(Rd

1 )TS(Q1) − D1Ω̃1, (61)

τD1 = RT
P R2τD2 + Ωd

P × JP (s)ΩP + JP (s)Ω̇d
P − DP Ω̃P

+1

2
N(s, ṡ)

(
ΩP + Ωd

P

) − Φ ′(tr(A − AQP )
)
(Rd

P )TS(QP ), (62)

us = 2mP s̈d − L(s, ΩP ) − P s̃ − Q ˙̃s, (63)

τD2 = Ωd
2 × JL0Ω2 + JL0Ω̇

d
2 − D2Ω̃2 − Φ ′(tr(A − AQ2)

)
(Rd

2 )TS(Q2), (64)



J Intell Robot Syst (2018) 89:155–173 167

asymptotically stabilize a desired state trajectory of
the form given by Eqs. 41–42. Further, the domain
of convergence of this trajectory is almost global in
the state space in the absence of control constraints,
disturbance forces and disturbance torques.

Proof See Appendix A.

Note that, this trajectory tracking control scheme
can be applied in general to track all C2 desired state
trajectories, provided that actuator constraints are not
violated. In practice, the desired state trajectories can
be designed keeping in mind known actuator con-
straints for the RMB or for a humanoid robot being
modeled by the RMB.

5 Numerical Results

Having developed a geometric controller for asymp-
totically tracking trajectories, we now validate the
proposed controller through a numerical simulation of
the hybrid model developed in Section 2.

To illustrate the capability of the controller, we will
demonstrate (a) walking in a straight line, (b) walking
towards a goal location, and (c) walking in a circle.
In all cases, we choose a constant desired torso angle
leaning forward, this is in contrast to Eq. 42 to sim-
plify velocity and acceleration computation. The mass
and inertia properties of the reaction mass biped are
chosen to be similar to that of a NAO robot, as done in
[26], in particular,

mL = 0.882kg, JL0 = 0.5diag{0.98, 0.91, 0.63}kg-m2,

mP = 0.32kg, JP0 =
[

0.2126 0.0004 −0.0002
0.0004 0.2042 0.0010

−0.0002 0.0010 0.2246

]

kg-m2.

Walking in a Straight Line: We chose ζ1 = ζ2 =
e2, R10 = R20 = I , and T = 1s as in Eq. 41.
Moreover, we introduce a constant phase offset in the
angles for Rd

1 , Rd
2 to enable the swing legs to swing

from −15◦ to 15◦. For all other motion design and
controller gain parameters, see Table 3. Figure 3a
illustrates a snapshot and the tracking errors.

Walking Towards a Goal: We employ the walking in
a straight line controller as above, however, we per-
form an event-based modification of R10, R20 at each
impact to change the heading of the biped. Figure 3b
illustrates a snapshot and the tracking errors. Note
that at each impact, the desired yaw instantaneously
changes and the controller is able to regulate the errors
asymptotically within a step.

Walking in a Circle: We employ the walking towards
a goal controller as above, however we modify
R10, R20 by a fixed amount at each impact. Moreover,
R10, R20 are also chosen to lean the body into the turn.
Figure 3c illustrates a snapshot (along with the hip
position demonstrating the body lean) and the track-
ing errors. Note that instead of modifying R10, R20,
we could have modified ζ1, ζ2 too.

For all these motions, it is important to verify that
the unilateral ground contact constraints and the fric-
tion constraints are satisfied during the walking, i.e.,
we need to ensure |Fx | ≤ μFz and |Fy | ≤ μFz, where
μ is the coefficient of static friction. The ground reac-
tion forces were computed as, FG = mẍcm − mge3,
where FG := [Fx Fy Fz] and xcm is the center-of-
mass of the RMB. It is equally critical to verify these
constraints for the impact forces (IR in Section 2.3)
generated at the end of every step. Note that, the
above-mentioned three motions namely a) ‘walking
in a straight line’, b) ‘walking towards a goal’ and
c) ‘walking in a circle’, take 10, 13, 19 steps respec-
tively. In all these impact situations, we note that
IRz is always positive (≥ 1.6019 N). Moreover, the

maximum values of |IRx |
IRz

and
|IRy |
IRz

are 0.5872 and

0.5888, respectively, both occurring while walking in
a circle.

Combining the impact-force data with the stance
leg ground reaction force information, as shown in the
third row of Fig. 3a, b, c, we can conclude that, for
μ ≥ 0.6, the ground reaction force and the impact
force respect the unilateral and friction cone con-
straints, thereby validating the assumptions that 1)
stance leg is pinned to the ground during stance-phase
and 2) No slip occurs at impact.

In addition to testing the trajectory tracking con-
troller on the continuous-time dynamics model of the
RMB, it was also tested on the Discrete-time model
developed in Section 3. Figure 4 shows the perfor-
mance of the GVI in comparison to the traditional
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Table 3 List of various tuning parameters used in the motion primitive and controller designs

Motion Primitive Parameters

ρ0 = 0.9, ρ̄ = 0.1, s = 0.125, s̄ = 0.025.

Controller Tuning Parameters

ε = 0.25, k = 16
ε2

, l = 8
ε
, A = 1

ε2
diag(1.2, 1.5, 1.8), L = (1.5)(1.2)diag(1, 1, 1),

D1 = 2
ε
diag(1, 1, 1), D2 = 0.5

ε
diag(1, 1, 1), P = 1.2

ε2
diag(1, 1, 1), Q = 1.5

ε
diag(1, 1, 1).

Runge-Kutta(4,5)-based integrator (RK45). RK45 is a
very popular numerical integration algorithm based on
the explicit Runge-Kutta formula [3]. It is also part of
Matlab’s ODE suite [27].

In Fig. 4a, the two integrators are compared for a two-
step walking scenario where the robot is initialized
along the desired nominal trajectory (here, we chose
the ‘walking in a circle’ trajectory) given by Eqs. 41
and 42: qs0 = (ρ0, R10 , RP0 , s0, R20). On the other
hand, in Fig. 4b, we start with a perturbed initial condi-
tions: qpert

s0 = (ρ0 + 0.1, Rx(π/10)R10, RP0 , s0, R20)

and ω
pert
s0 = (ρ̇0, Ω10 , ΩP0 + 0.01, ṡ0 − 0.03, Ω20).

Here Rx(θ) denotes a rotation along the x-direction
by an angle θ . For both these cases, we plot (a) the
desired leg extension tracking error (ρ̄) as obtained
from Eq. 51, (b) discrete Lyapunov function (obtained
by discretizing Eqs. 52, 53 and 54) given by Eq. 65,
and (c)–(d) R1, R2 norm errors. The norm errors are
computed as ||I − RT

i Ri || ∀i ∈ {1, 2}. If the group
structure (R ∈ SO(3)) of R1 and R2 is preserved dur-
ing the numerical integrations, the norm errors must
be closer to zero.

Vk(ρ̃1k
, Q1k

, ˙̃ρ1k
, Ω̃1k

, QPk
, ΩPk

, s̃k, ˙̃sk, Q2k
, Ω̃2k

) = VL1k
(ρ1k

, ρ̃1k
, Q1k

, ˙̃ρ1k
, Ω̃1k

)

+VPk
(QPk

, Ω̃Pk
, sk, s̃k, ˙̃sk) + VL2k

(Q2k
, Ω̃2k

) (65)

where,

VL1k
(ρ1k

, ρ̃1k
, Q1k

, ˙̃ρ1k
, Ω̃1k

) = 1

2
m ˙̃ρ2

1k
+ 1

2
Ω̃T

1k
J1(ρ1k

)Ω̃1k
+ 1

2
kρ̃2

1k
+ Φ

(
tr(A − AQ1k

)
)
,

VPk
(QPk

, Ω̃Pk
, sk, s̃k, ˙̃sk) = 1

2
Ω̃T

Pk
JP (sk)Ω̃Pk

+ mP
˙̃sTk ˙̃sk + 1

2
s̃Tk P s̃k + Φ

(
tr(A − AQPk

)
)
,

VL2k
(Q2k

, Ω̃2k
) = 1

2
Ω̃T

2k
JL0Ω̃2k

+ Φ
(
tr(A − AQ2k

)
)
. (66)

Note that, for this study the step size chosen for the
GVI and RK45 was h = 10−3. From the third and
fourth rows of Fig. 4, it is can be noted that the varia-
tional integrator maintained the group structure much
better than the RK45 Integrator. On further examina-
tion, it was found that the GVI kept the norm error

within 10−12 which is orders of magnitude better than
RK45. Moreover, other parameters like configuration
errors(ρ̄), energies, etc., as computed using the dis-
crete GVI-based system model, track the continuous
dynamics as accurately as the discrete-model based on
RK45, if not better.
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Fig. 3 Numerical simulations of the controller for (a) Walk-
ing along a straight line, (b) Walking towards a goal location
by changing the yaw-angle in an event-based step-to-step man-
ner, and (c) Walking in a circle while leaning inwards, with the
hip position shown in green. For all these cases, first row shows
simulation snapshots. The second row shows error plots to study
controller behavior. The errors include those defined in Eq. 51,
namely |ρ̃1|, ||s̃||, || log(Q1)||, || log(QP )||, and || log(Q2)||.
As can be seen, the controller reduces the error during the con-
tinuous stance-phase, while the impacts causes the errors to
increase. The simulation begins with zero initial errors, and
hence the errors during the first step remain zero. Third row

shows ground reaction force plots and force-ratios. Note that, if
you assume the coefficient of static friction to be greater than
0.6, RMB satisfies the no slip condition at the stance leg for all
the three walking trajectories. Since the legs make a point con-
tact with the ground, we can assume the friction forces (Fx and

Fy ) to be isotropic. Clearly, |Fx |
Fz

≤ 0.6 and |Fy |
Fz

≤ 0.6. Fourth
row shows the energy plots for the closed-loop dynamics of the
RMB walking. Finally, in the the fifth row, we show the ankle
torque (τ1) generated for the three walking trajectories. The x-
axis for all the plots is Time(in seconds) and it is only shown for
the fifth row to avoid repetitions
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Fig. 4 Comparing the performance of GVI with Runge-Kutta
45 based Integrator. In (a) RMB starts along the desired walk-
ing trajectory and a nominal controller is in action for tracking

purposes. However, in (b), RMB starts with an initial error in its
configuration

6 Conclusion and Future Work

A variable inertia multibody reduced-order reaction
mass biped model (RMB) is presented that can cap-
ture a much wider class of bipedal locomotion. A
coordinate-free hybrid dynamical model of the RMB
is introduced. A discrete version of the model has
been developed that maintains the structural and geo-
metrical properties of the system and enables fast
implementations on hardware. An asymptotically sta-
ble trajectory tracking control scheme with almost
global domain of convergence was also developed to
enable the reaction mass biped to walk along straight
and curved paths.

Despite all the useful additions, the RMB has room
for improvement. The influence of the reaction masses
and the varying torso inertia on the gait design is not
investigated. The primary objective of future work is
to study the impact of upper-body inertia on RMB’s
locomotory behavior. Additionally, the proof masses

are constrained to move together, either towards or
away from each other. We assume full actuation, but
in reality there are under-actuated phases (toe-off) in
walking which are not captured by this model. These
constraints will be relaxed in future works. Finally, the
center-of-mass is assumed to be at the hip. This makes
the dynamics of the torso, swing and stance legs fully
decoupled thereby simplifying the control design.

As a part of future work, a variational collision inte-
grator [23] needs to be added to the discrete dynamics
to complete the discrete hybrid model for walking.
Finally, optimization and optimal control policy for
walking and turning can be developed. Ultimately, the
objective of the RMB is to achieve a wider variety of
gaits, like high-lean turning, running, dynamic balanc-
ing, etc. After having developed sufficient mathemat-
ical machinery that lead to the discovery of efficient
and stable walking gaits for the coordinate-free RMB
model, our final goal is to validate our results on an
appropriate 3D bipedal robot in the near future.
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Appendix A: Theorem 1 Proof

Consider the Lyapunov function

V (ρ̃1, Q1, ˙̃ρ1, Ω̃1, QP , ΩP , s, ṡ, Q2, Ω̃2)

= VL1(ρ1, ρ̃1, Q1, ˙̃ρ1, Ω̃1)

+VP (QP , Ω̃P , s, s̃, ˙̃s) + VL2(Q2, Ω̃2), (67)

which captures the three coupled components: the
stance leg, torso, and swing leg, of the RMB. The
time derivative of this Lyapunov function is obtained
by substituting expressions Eqs. 68, 69 and 70 for
the time derivatives of VL1 , VP , and VL2 respectively.
Further substitutions of the control laws Eqs. 60–64
in these expressions gives the time derivatives along
trajectories of the feedback tracking system

V̇L1(
˙̃ρ1, Ω̃1) = −� ˙̃ρ2

1 − Ω̃T
1 L1Ω̃1, (68)

V̇P (Ω̃P , ˙̃s) = −Ω̃T
P LP Ω̃P − ˙̃sTQ ˙̃s, (69)

V̇L2(Ω̃2) = −Ω̃T
2 L2Ω̃2. (70)

This makes the time derivative of the overall Lyapunov
function negative semi-definite:

V̇ ( ˙̃ρ1, Ω̃1, Ω̃P , ˙̃s, Ω̃2) = −� ˙̃ρ2
1 − Ω̃T

1 L1Ω̃1

−Ω̃T
P LP Ω̃P − ˙̃sTQ ˙̃s

−Ω̃T
2 L2Ω̃2. (71)

Assuming that the desired motion trajectories are
bounded and continuous, as is the case with the
desired motions given by Eqs. 41–42, then V as given
by Eq. 67 is positive definite and is bounded above
and below by suitably chosen positive definite func-
tions of the trajectory tracking error states. Therefore,
invoking invariance-like principle given by Theorem
8.4 in [15], one can conclude that V̇ converges asymp-
totically to zero. Therefore, the positive limit set for
the feedback tracking control system is a subset of

V̇ −1(0) ={
(ρ̃1, Q1, ˙̃ρ1, Ω̃1, QP , ΩP , ˙̃s, Q2, Ω̃2) : ˙̃ρ1 = 0,

Ω̃1 = 0, Ω̃P = 0, ˙̃s = 0, Ω̃2 = 0
}
. (72)

The feedback dynamics can be expressed in terms of
the tracking errors as follows:

m ¨̃ρ1 = −� ˙̃ρ1 − kρ̃1, (73)

J1(ρ1)
˙̃

Ω1 = −Ω̃1 × J1(ρ1)Ω1 + mρ1ρ̇1
(
e×
3

)2
Ω̃1 − D1Ω̃1

−Φ ′(tr(A − AQ1)
)
(Rd

1 )TS(Q1), (74)

JP (s)
˙̃

ΩP = −Ω̃P × JP (s)ΩP − 1

2
N(s, ṡ)Ω̃P − DP Ω̃P

−Φ ′(tr(A − AQP )
)
(Rd

P )TS(QP ), (75)

2mP
¨̃s = −Q ˙̃s − P s̃, (76)

JL0
˙̃

Ω2 = −Ω̃2 × JL0Ω2 − D2Ω̃2

−Φ ′(tr(A − AQ2)
)
(Rd

2 )TS(Q2). (77)

Therefore in the set V̇ −1(0), the feedback dynamics
is restricted to

ρ̃1 = 0, Φ ′(tr(A −AQ1)
)= 0, Φ ′(tr(A−AQP )

)=0,

s̃ = 0, and Φ ′(tr(A − AQ2)
) = 0, (78)

which characterizes the positive limit set of the feed-
back tracking system. Note that within the set of four
critical points Ec of Φ

(
tr(A − AQ)

)
, it can be shown,

as in [2, 24, 25], that Q = I is the minimum, while
the other points (Q ∈ Ec \ I ) are non-degenerate crit-
ical points. Therefore, as V̇ ≤ 0 along the trajectories
of the feedback system, the only stable subset of the
positive limit set is when the actual motion is tracking
the desired motion, i.e.,

ρ̃1 = 0, Q1 = I, QP = I, s̃ = 0, and Q2 = I. (79)

The other subsets (corresponding to Q1, QP , Q2 ∈
Ec\I ) are unstable, although they may have stable sub-
sets. Except for trajectories that start on these stable
subsets of the positive limit set, all other trajecto-
ries in the state space converge asymptotically to the
desired state trajectory. This means that the set SL is
asymptotically stable and its domain of attraction is
almost-global.
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