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1 Introduction

Autonomous operations of unmanned vehicles is con-
sidered an important topic of current research interest
for several applications where remote human pilot-
ing is not feasible or convenient. Increased auton-
omy is useful in diverse applications like secu-
rity, agriculture and aquaculture, inspection of civil-
ian infrastructure, space and underwater exploration,
wildlife tracking and conservation, package deliv-
ery and remote sensing. A critical aspect of reliable
operations of unmanned vehicles is that of nonlin-
early stable autonomous guidance and control with
a large domain of attraction for robustness to exter-
nal disturbances. This is particularly true for beyond
visual-line-of-sight (BVLOS) operations that require
safety and reliability in the presence of disturbances
like wind. Absence of nonlinear stability in such a
situation may lead to failure and crash of the vehi-
cle, as shown in this video compilation. This paper
investigates the problem of steering an underactuated
vehicle that has four independent control inputs for
the six degrees of freedom of translational and rota-
tional motion in three dimensional Euclidean space.
The control inputs actuate the three degrees of rota-
tional motion and one degree of translational motion
in a vehicle body-fixed coordinate frame. This actua-
tion model covers a wide range of unmanned vehicles
like fixed-wing and quadcopter unmanned aerial vehi-
cles (UAVs), and spacecraft. An integrated guidance
and feedback tracking control scheme is then obtained
from a few given waypoints that are prescribed
in terms of their position vectors. Prior related
research on this topic includes [1, 2, 8, 9, 12, 14, 16,
17, 19, 23].

In addition to the necessity of a nonlinearly sta-
ble feedback control scheme with a large domain
of attraction, the translational dynamics and attitude
dynamics of the underactuated unmanned vehicle with
the actuation described here, are coupled. As the con-
trol force vector is in a body-fixed direction, the body’s
rotational (attitude) dynamics needs to be controlled

simultaneously with its translational dynamics. This
motivates the approach used to design an integrated
trajectory generation and feedback control system in
this paper. The vehicle’s pose (position and orienta-
tion) are represented globally and its dynamics ana-
lyzed in the framework of geometric mechanics [4,
7]. The configuration space is the Lie group SE(3)
[13, 21, 22], which is the set of positions and ori-
entations of the vehicle moving in three-dimensional
Euclidean space. The integrated scheme given here
uses a trajectory generation method that is similar to
that of [14], in addition to an attitude control law that
is almost globally finite-time stable (AGFTS) and a
position tracking control law that is globally asymptot-
ically stable. The AGFTS attitude tracking control law,
in turn, is based on a recent approach to finite-time
attitude stabilization on TSO(3) given in [5]. Because
this control law uses the global and unique repre-
sentation of rigid body attitude provided by rotation
matrices, it is not ambiguous, unlike the quaternion
representation, and it is free from kinematic singu-
larities. The control laws assume that feedback from
onboard sensors fixed to the vehicle, e.g., inertial and
vision sensors, are available. Therefore, these control
laws can be implemented with onboard sensors and
state estimation schemes that can estimate the pose
and body velocities from such sensor measurements
[6, 10, 15, 20, 26]. In particular, the integrated guid-
ance and control scheme given here can be used in
conjunction with pose estimation schemes like [10,
11, 15] to provide autonomous navigation and control
capability in GPS-denied environments.

This paper is organized as follows. Section 2 out-
lines the problem of generating a trajectory through
given waypoints and provides the kinematics and
dynamics model of the vehicle for arbitrary maneu-
vers. Section 3 details the trajectory generation and
position feedback tracking control approaches for con-
trolling the translational motion. The finite-time stable
attitude tracking control law is provided in Section 4,
along with the proof of stability of the overall feed-
back control system. Numerical simulation results
based on a Lie group variational integration scheme
to discretize the feedback dynamics, are provided in
Section 6. A summary of results obtained in this paper
and related research directions to be pursued in the
near future are provided in Section 7.
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2 Guidance Scheme

2.1 Coordinate Frame Definition

The configuration of an unmanned vehicle modeled as
a rigid body is given by its position and orientation,
which are together referred to as its pose. To define
the pose of the vehicle, we fix a coordinate frame B to
its body and another coordinate frame I that is fixed
in space and takes the role of an inertial coordinate
frame. Let b ∈ R

3 denote the position vector of the
origin of frame B with respect to frame I represented
in frame I. Let R ∈ SO(3) denote the orientation,
defined as the rotation matrix from frame B to frame
I. The pose of the vehicle can be represented in matrix
form as follows:

g =
[

R b

0 1

]
∈ SE(3), (1)

where SE(3) is the six-dimensional Lie group of rigid
body motions (translational and rotational) that is
obtained as the semi-direct product of R3 with SO(3)
[25].

2.2 Trajectory Generation for Unmanned Vehicle

The trajectory generation problem consists of creat-
ing an appropriately smooth trajectory through a given
finite set of desired waypoints which the underactu-
ated vehicle’s trajectory is required to pass through.
These waypoints are given in the inertial frame I as
follows:

bd1, bd2 , . . . , bdn ∈ R
3, with bdi

= bd(ti) ∈ R
3

and t1 < t2 < . . . < tn.
(2)

Here bd(t) gives the desired position trajectory on R
3

parameterized by time. A time trajectory for the posi-
tion that is continuous and twice differentiable (i.e.,
bd(t) = C2(R3)) could be generated, for example,
using interpolating functions between the waypoints,
e.g., [14, 17]. A time trajectory for the position can
also be generated using standard linear quadratic con-
trol schemes, and we are currently exploring this
approach to generate smooth trajectories between
waypoints. Once the desired position trajectory over
time has been generated based on the given waypoints,
one needs to generate a desired attitude trajectory such

that the position trajectory is achieved. The procedure
by which this is done utilizes the known actuation and
the dynamics model, and is detailed in the following
section.

Let gd(t) ∈ SE(3) be the desired pose (posi-
tion, bd and attitude, Rd ) generated by the guidance
scheme. Then the desired velocities (translational, νd

and rotational, �d ) are given by ξd(t) that satisfies the
kinematics

ġd (t) = gd(t)ξd(t)∨,

where gd(t) =
[

Rd bd

0 1

]
, (3)

ξd =
[

�d

νd

]
∈ R

6 and ξ∨
d =

[
�×

d νd

0 0

]
∈se⊂R

4×4.

Here (·)∨ =
{[

�× ν

0 0

]
∈ se(3) | �, ν ∈ R

3
}

, is a

vector space isomorphism from R
6 to the associated

Lie algebra of SE(3), se(3) and (·)× : R3 → so(3) ⊂
R

3×3 is the skew-symmetric cross-product operator
that gives the vector space isomorphism between R

3

and so(3):

x× =
⎡
⎣ x1

x2

x3

⎤
⎦

×

=
⎡
⎣ 0 −x3 x2

x3 0 −x1

−x2 x1 0

⎤
⎦ . (4)

In addition to the desired waypoints, the vehicle has to
satisfy its known dynamics. Consider the “nominal”
model of the dynamics for the underactuated vehicle
as given by

Iξ̇ = ad∗
ξ Iξ +ϕ(g, ξ)+Bu, u ∈ C ⊂ R

4, B ∈ R
6×4,

(5)

where I denotes the mass (m) and inertia (J ) proper-
ties of the vehicle given as

I =
[

J 0
0 mI3

]
∈ R

6×6 (6)

and I3 is the 3 × 3 identity matrix.
The vector of known (modeled) moments and

forces is denoted ϕ(g, ξ) ∈ R
6; usually this is

obtained from a known model. Note that the vehicle
has four inputs for the six degrees of freedom of trans-
lational and rotational motion, as given by the control
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influence matrix B, which can be expressed in block
matrix form as follows:

B =
[

I4

02×4

]
,

where I4 is the 4 × 4 identity matrix. The adjoint
operator on se(3) and the co-adjoint operator (ad∗

ξ ) are
defined in matrix form [25] as

adξ =
[ −�× 0

−ν× −�×
]

and ad∗
ξ = (adξ )

T, (7)

where �, ν ∈ R
3 denote the rotational and transla-

tional velocities of the underactuated vehicle, respec-
tively, in frame B. The vector of control inputs u ∈

C ⊂ R
4 has to be in the set of admissible controls

C and directly actuates the three degrees of rotational
motion and one degree of translational motion. This
actuation model is applicable to aerial, space and
underwater vehicles and it is known that a rigid body
is controllable with such actuation [8, 12].

3 Feedback Guidance and Tracking on TSE(3)

The desired trajectory is generated in SE(3) and the
tracking errors are expressed with respect to inertial
and body fixed frames as follows,

b̃ := b − bd Position tracking error in inertial frame

x := RT
d b̃ Position tracking error in body fixed frame

ṽ := v − vd= ˙̃
b Velocity tracking error in inertial frame

Q := RT
d R Attitude tracking error

ω := � − QT�d Angular velocity tracking error

3.1 Tracking errors expressed in body frame

Tracking errors on TSE(3) are defined as follows (as
in [22]):

g =
[

R b

0 1

]
, gd =

[
Rd bd

0 1

]
. (8)

Tracking error on SE(3):

h = g−1
d g =

[
Q x

0 1

]
, (9)

where Q = RT
d R and x = RT

d (b − bd) = RT
d b̃.

Therefore, the kinematics for the pose tracking error
is:

ḣ = hξ∨, (10)

where

ξ∨ =
[

ω× v

0 0

]
, (11)

and ω = � − QT�d, υ = ν − QT(νd + �×
d x). The

dynamics for the tracking errors in velocities is:

mυ̇ = −f e3 + m{ω×QTνd − QT(ν̇d + �̇×
d x

+�×
d Qv))} + m(υ + QTνd)×(ω + QT�d)

+mgQTRT
d e3, (12)

J ω̇ = τ + J (ω×QT�d − QT�̇d)

−(ω + QT�d)×J (ω + QT�d). (13)

3.2 Translational Motion Control in Inertial Frame

Because the desired position trajectory, bd(t), is gen-
erated in the inertial frame I, it is convenient to
express the position and translational velocity tracking
error dynamics (12) in this frame. As the translational
dynamics is expressed in the inertial frame, the rota-
tional dynamics is decoupled from the translational
dynamics such that the translation control force is
obtained in the inertial frame followed by the appro-
priate attitude control in body-fixed frame to track the
desired trajectory, bd . Note that v = Rν and QTνd =
RRdνd = RTvd , where vd = Rdνd = ḃd . Define

b̃ := b − bd and ṽ := v − vd = ˙̃
b. Therefore, in
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inertial frame I, the position and translational velocity
tracking error dynamics are:

˙̃
b = ṽ = v − vd, m ˙̃v = mge3 − f r3 + mv̇d, (14)

where r3 = Re3 is the third column vector of the
rotation matrix R from frame B to frame I, which
represents the true attitude of the body. Here, e1 =
[1 0 0]T, e2 = [0 1 0]T and e3 = [0 0 1]T are the stan-
dard basis vectors (as column vectors) of R3. Note that
f r3 = ϕ̄c can be considered as the control force vec-
tor acting on the body, expressed in inertial frame. The
magnitude of this vector is one of the control inputs
f , which is designed as a feedback control law. The
direction of this vector r3 = Re3 is designed as part
of the desired trajectory for the attitude in SO(3), with
the other two column vectors of the rotation matrix
R obtained from the generated trajectory for r3. This
feedback guidance plus trajectory tracking control is
detailed in the following development.

Consider the following Lyapunov function for the
desired translational motion:

Vtr (b̃, ṽ) = 1

2
mṽTṽ + 1

2
b̃P b̃, (15)

where P ∈ R
3×3 is a positive definite control

gain matrix. Therefore, along the translational error
dynamics (14),

V̇tr = mṽT ˙̃v + b̃P
˙̃
b = ṽT(m ˙̃v + P b̃)

= ṽT(mge3 − f r3 − mv̇d + P b̃). (16)

It is desired that the control force vector satisfies

f r3 = ϕ̄c = mge3 + P b̃ + Lvṽ − mv̇d, (17)

where Lv ∈ R
3×3 is another positive definite con-

trol gain matrix. Therefore, the control law for the
magnitude of this force vector is:

f =eT
3 RTϕ̄c =eT

3 RT(mge3+P b̃+Lv(Rν−vd)−mv̇d

)
.

(18)

However, to achieve stable tracking of the desired
translational motion, the attitude has to be controlled
such that the direction of Re3 = r3 agrees with that
specified by Eq. 17. This is done in the following
subsection.

3.3 Generating Desired Attitude Trajectory

Given the desired control force vector in inertial frame
as given by Eq. 17, one can generate a desired trajec-
tory for the third column of Rd (the desired attitude)
as follows:

r3d = mge3 + P b̃ + Lvṽ − mv̇d∣∣∣∣∣∣mge3 + P b̃ + Lvṽ − mv̇d

∣∣∣∣∣∣ = Rde3. (19)

Select an appropriate sd(t) ∈ C2(R3) such that it is
transverse to r3d . Now compute

r2d = r3d × sd

||r3d × sd || = Rde2,

and r1d = r2d × r3d = Rde1. (20)

The desired attitude trajectory is then given by:

Rd = [r2d × r3dr2dr3d ] ∈ SO(3). (21)

Few methods to select sd(t) appropriately is described
in the following results.

Proposition 1 If sd is selected as

sd = 1 × r3d + μe1, with μ > 3, (22)

then sd is always transverse and never parallel to r3d .

Proof The condition on μ in Eq. 22 comes from the
following observation:

r3d × sd = r3d × (1 × r3d + μe1)

= (rT
3dr3d)1 − (rT

3d1)r3d + μr3d × e1

= 1 − (rT
3d1)r3d + μr3d × e1, (23)

because r3d ∈ S
2, i.e., it is a unit vector. Define

ρ(r3d) = 1 − (rT
3d1)r3d so that

r3d × sd = ρ(r3d) + μr3d × e1. (24)

It can be verified that the components of the vec-
tor ρ(r3d) are bounded in the closed interval [− 4

3 , 0].
Therefore, the first component of the vector r3d × sd
is bounded in the closed interval [μ − 4

3 , μ]. If μ > 3,
then this component is always positive, and there-
fore r3d × sd �= 0. Therefore, the choice of sd given
in Eq. 22 ensures that it is always transverse to the
generated r3d .

The following statement gives a simpler choice of
sd in R

3 that is transverse to r3d ∈ R
3. It also gives a

vector that is orthogonal to the given unit vector.
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Proposition 2 Let r3d = [
a1 a2 a3

]T ∈ S
2 ⊂ R

3 be
a known unit vector as given in Eq. 19. The vector

sd =
⎡
⎣ a2 + a3

a3 − a1

−a1 − a2

⎤
⎦ (25)

is orthogonal to r3d .

Proof This is easily verified by the property of scalar
product (orthogonal projection) as follows:

rT
3dsd = a1(a2 + a3) + a2(a3 − a1) + a3(−a1 − a2)

= a1(a2 + a3 − a2 − a3) + a2(a3 − a3) = 0.

This shows that the vector sd as defined by Eq. 25 is
orthogonal to the given vector r3d .

As the next step, a control torque is selected such
that R → Rd in finite time; this is done using an
attitude tracking control scheme outlined in the next
section.

4 Feedback Tracking Control Schemes

The finite-time attitude tracking control scheme given
here is based on the recent work [5]. It is known that
finite-time stability is more robust to external distur-
bances to the dynamics than asymptotic or exponential
stability [3, 5]. Having a finite-time stable attitude
control scheme also theoretically guarantees that the
overall combined feedback attitude and position track-
ing control scheme is asymptotically stable, unlike the
schemes presented in [14] which only guarantee con-
vergence and not stability. This is because the desired
thrust direction required for the position control is
achieved in finite time, as shown in the second part of
this section. The first part of this section details the
attitude tracking control scheme and its stability prop-
erties, while the second part gives the stability result
for the entire (translational and rotational) motion
control scheme.

4.1 Finite-time Stable Attitude Tracking Control
on TSO(3)

Here we provide a finite-time stable attitude control
scheme that is continuous and can be implemented
with actuators commonly used for unmanned vehicles

like rotorcraft and fixed-wing UAVs. The following
two lemmas are used to prove the main result.

Lemma 1 Let a and b be non-negative real numbers
and let p ∈ (1, 2). Then

a(1/p) + b(1/p) ≥ (a + b)(1/p). (26)

This inequality is strict if both a and b are non-zero.

This above inequality holds for all p > 1 as f (x) =
x(1/p) is a concave function and therefore subadditive.
For the finite-time attitude tracking scheme, only the
case where p ∈ (1, 2) is required.

Lemma 2 LetK = diag(k1, k2, k3), where k1 > k2 >

k3 ≥ 1. Define

sK(Q) =
3∑

i=1

ki(Q
Tei) × ei, (27)

such that d
dt

〈K, I − Q〉 = ωTsK(Q). Here 〈A, B〉 =
tr(ATB), which makes 〈K, I − Q〉 a Morse function
defined on SO(3). Let S ⊂ SO(3) be a closed subset
containing the identity in its interior, defined by

S = {
Q ∈ SO(3) : Qii ≥ 0 and QijQji ≤ 0

∀i, j ∈ {1, 2, 3}, i �= j
}
. (28)

Then for Q ∈ S, we have

sK(Q)T sK(Q) ≥ tr(K − KQ). (29)

The proof of this result is given in [5], and is omit-
ted here for brevity. The finite-time attitude tracking
control scheme and its proof of stability are given as
follows. Note that this control scheme is continuous
(indeed smooth) in time. This is unlike sliding mode
control schemes that cannot be implemented with
actuators (like rotors) that can only provide continuous
control inputs.

Theorem 1 Consider the attitude dynamics of Eq. 13
with sK(Q) as defined in Eq. 27. Define

zK(Q) = sK(Q)(
sT
K(Q)sK(Q)

)1−1/p
, and (30)

w(Q, ω) = d

dt
sK(Q) =

3∑
i=1

kiei × (ω × QTei), (31)

where p is as defined in Lemma 1. Further, letL� be a
positive definite control gain matrix such that L� − J
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is positive semidefinite, let kp > 1 and define κ such
that

κp = σL,min

σJ,max
> 0.

Consider the feedback control law for τ given by

τ = J

(
QT�̇d − κH(sK(Q))(

sT
K(Q)sK(Q)

)1−1/p
w(Q, ω)

)

+(QT�d)×J
(
QT�d −κzK(Q)

)+κJ
(
zK(Q)

×QT�d

) + κJ (ω+QT�d)×zK(Q)−kpsK(Q)

− L��(Q, ω)(
ψ(Q, ω)TL��(Q, ω)

)1−1/p
, (32)

where

ψ(Q, ω) = ω + κzK(Q), (33)

and H(x) = I − 2(1 − 1/p)

xTx
xxT. (34)

Then the feedback attitude tracking error dynamics
given by Eq. 13 is stabilized to (Q, ω) = (I, 0) in
finite time.

Proof Consider ω = −κzK(Q) and define the Morse-
Lyapunov function 〈K, I − Q〉 on SO(3). Then the
time derivative of this Morse-Lyapunov function along
the attitude kinematics is given by

d

dt
〈K, I − Q〉 = ωTsK(Q) = −κsT

K(Q)zK(Q)

= −κ
sT
K(Q)sK(Q)(

sT
K(Q)sK(Q)

)1−1/p

= −κ
(
sT
K(Q)sK(Q)

)1/p

≤ −κ
(〈K, I − Q〉)1/p

, (35)

where we employed inequality (26) in Lemma 1.
Therefore, when �(Q, ω) = 0, one can conclude that
〈K, I − Q〉 → 0 in finite time for all initial Q in the
subset S ⊂ SO(3) defined in Lemma 2, which yields
Q → I in finite time once Q ∈ S.

The control law is then designed to ensure that
�(Q, ω) → 0 in finite time. Consider the Lyapunov
function

Vrot (Q, ω) = kp〈K, I − Q〉 + �(Q, ω)TJ�(Q, ω),

(36)

for the attitude dynamics of Eq. 13 with control law
(32). The time derivative of this Lyapunov function
along this feedback dynamics is given by

V̇rot = kpωTsK(Q) + ψ(Q, ω)TJ ψ̇(Q, ω)

= kpωTsK(Q) + �T[
τc + J� × (

QT�d

−κzK(Q)
) + J

(
ω×QT�d − QT�̇d

)

+ κJH(sK(Q))(
sT
K(Q)sK(Q)

)1−1/p
w(Q, ω)

]
(37)

After substituting the control law (32) into the expres-
sion (37) and carrying out several algebraic simplifi-
cations, one obtains

V̇rot = −kpκ
(
sK(Q)TsK(Q)

)1/p

−(
�(Q, ω)TL��(Q, ω)

)1/p

≤ −κ
(
kp〈K, I − Q〉)1/p

−κ
(
�(Q, ω)TJ�(Q, ω)

)1/p
,

for (Q, ω) ∈ S × R
3, where S ⊂ SO(3) is as

defined in (28). After substituting inequality (26) into
the above expression, one obtains

V̇rot ≤ −κ
(
kp〈K, I − Q〉 + �(Q, ω)TJ�(Q, ω)

)1/p

= −κV
1/p
rot , (38)

which implies that the feedback attitude tracking con-
trol system is (locally) finite-time stable at (Q, ω) =
(I, 0) [3].

Note that the domain of attraction shown in the
above analysis is (Q, ω) ∈ S × R

3. The rest of the
proof to show almost global finite-time stability of the
attitude feedback control is identical to the proof of
the similar result given in [5], and is omitted here for
the sake of brevity.

4.2 Stability of the Overall Feedback System
on TSE(3)

The following statement outlines the stability of the
overall feedback system with the control laws (32) and
(18).

Theorem 2 The overall feedback control system given
by the tracking error kinematics (10) and dynam-
ics (13)–(14) is asymptotically stable for the gener-
ated state trajectory

(
bd(t), Rd(t), vd(t), �d(t)

) ⊂
TSE(3). Moreover, the domain of convergence is
almost global over the state space.
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Proof This attitude tracking control scheme given by
Theorem 1 ensures that R(t) = Rd(t) for time t ≥ T

where T > 0 is finite. Therefore, one obtains r3 =
Re3 = r3d for t ≥ T , and from Eqs. 18 and 19,

f =
∣∣∣∣∣∣mge3 + P b̃ + Lvṽ − mv̇d

∣∣∣∣∣∣ , and

f r3 = f r3d = mge3 + P b̃ + Lvṽ − mv̇d fort ≥ T .

(39)

Substituting Eqs. 39 in 16 gives:

V̇tr = ṽT(mge3 − f r3d − mv̇d + P b̃)

= −ṽTLvṽ ≤ 0. (40)

Since Lv is positive definite, V̇tr = 0 if and only if ṽ =
0. Applying LaSalle’s invariance principle, one can
show that when ṽ = 0, m ˙̃v = mge3−f r3d +mv̇d = 0,
and therefore P b̃ = 0, and thus b̃ = 0. Therefore, the
tracking errors for the translational motion converge
to (b̃, ṽ) = (0, 0).

Note that the finite-time stability of the attitude
control scheme guarantees that the desired thrust
direction, r3d , is achieved in finite time. This in turn
ensures that the desired position trajectory is asymp-
totically tracked and the overall attitude and position
tracking control system is asymptotically stable. The
almost global domain of convergence also provides
robustness to disturbances, as shown in [5]. More-
over, the continuous control schemes give here can be
implemented with rotorcraft UAV that have actuators
that can only provide continuous control forces and
torques.

5 Application to Autonomous UAV Navigation

5.1 Actuation Model

A vertical take-off and landing (VTOL) quadro-
tor/quadcopter UAV model with four identical actua-
tors (propellers), each separated by a scalar distance D

from the axis of rotation of the actuators to the center
of the UAV, is considered here. A conceptual diagram

of guidance on SE(3) through a set of waypoints is
given in Fig. 1.

The continuous equations of motion of the quad-
copter UAV is written as,

Ṙ = R �×, (41)

m v̇ = m g RT e3 − f e3, (42)

J �̇ = J� × � + τ (43)

Each propeller can generate a thrust fi proportional
to the square of the corresponding motor speed i.e.,
fi = kf ω̄2

i , and the torque generated by each actua-
tor is directly proportional to its thrust i.e., τi = kτ ω̄

2
i .

The first and second axes (a1 and a2) of the body-fixed
frame B lie in the plane normal to the axes of the pro-
pellers. The total thrust, f = ∑4

i=1 fi acts along the
third axis −a3 of the body-fixed frame B. For such
an UAV as shown in Fig. 1, the control input vector

u = [
f τ

]T
can be expressed in terms of the actuator

speeds ω̄i according to

u = K
[
ω̄2

1 ω̄2
2 ω̄2

3 ω̄2
4

]T
,

where

K =

⎡
⎢⎢⎣

−kf −kf −kf −kf

0 −kf D 0 kf D

kf D 0 −kf D 0
−kτ kτ −kτ kτ

⎤
⎥⎥⎦ ∈ R

4×4

is a constant invertible matrix for kf �= 0 and kτ �= 0
[24]. Then,

⎡
⎢⎢⎣

ω̄2
1

ω̄2
2

ω̄2
3

ω̄2
4

⎤
⎥⎥⎦ = K−1

[
f

τ

]
(44)

5.2 Guidance Algorithm

The objective of the integrated trajectory generation
and control is to navigate the UAV from an initial pose
to a final desired pose in SE(3), through a finite set of
desired waypoints. Pseudocode of the integrated guid-
ance and feedback control algorithm that generates a
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trajectory that passes through the waypoints (2) and
satisfies the kinematics and dynamics (3)–(5) is given
below:

6 Numerical Validation

6.1 Discretization of the UAV Dynamics

The continuous equations of motion are discretized in
the form of Lie Group Variational Integrator (LGVI)
for digital implementation by applying the discrete
Lagrange-d’Alembert principle. The LGVI preserves
the structure of the configuration space, which in this
case is the Lie group SE(3), without any reprojec-
tion or parametrization. The LGVI schemes also have

good energy-momentum properties when the dynam-
ical model is that of a conservative or nearly con-
servative system. The discrete model we obtain is a
Lie group variational integrator similar to the ones
obtained in [18].

Let h �= 0 denote the fixed time step size, such
that h = tk+1 − tk . Then the discretized equations of
motion obtained in the form of LGVI as,

Rk+1 = Rk Fk,

bk+1 = h Rkνk + bk,

mνk+1 = m F T
k νk + h m g RT

k+1e3 − h fk e3,

�×
dk+1

= 1

h
log(RT

dk
Rdk+1),

J �k+1 = F T
k J�k + hτk, (45)

where Fk ≈ exp(h �×
k ) ∈ SO(3) guarantees that Rk

evolves on SO(3).

6.2 Simulation Results

The integrated guidance and feedback control scheme
is numerical simulated for an UAV quadcopter
of mass, m = 4.34 kg; J = diag[0.820 0.0845
0.1377]kgm2. The helical desired trajectory and the
initial conditions are given as follows

bd(t) = [
0.4 sin(πt) 0.6 cos(πt) 0.4 t

]T
,

b(0) = [
1 0 0

]T
,

R(0) = I,

v(0) = [
0 0 0

]T ; v̇(0) = [
0 0 0

]T
and

�(0) = [
0 0 0

]T
.

The numerical simulation is performed for five sec-
onds, t = 5 with a time step size of h = 0.01, using
the LGVI routine given in Eq. 45 for the choice of sd
as given in Proposition 1. The results of the numeri-
cal simulation are summarized in Fig. 4. The attitude
error function � is parametrized as principle rotation
angle, in terms of Q as given by,

� = cos−1
(

1

2
(tr(Q) − 1)

)
.
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Fig. 1 Guidance through a
set of finite waypoints
between initial and final
configurations on SE(3)

The numerical results are obtained after selecting the
following gain values:

P = 38 × I 3×3;Lv = 25 × I 3×3

L� = 3.5 × I 3×3;p = 0.75;κ = 0.04 and kp = 4.5.

These gain values were selected after trial and error,
and provide desirable transient response characteris-
tics of the overall control scheme.

The time trajectory of the UAV tracking the desired
trajectory is shown in Fig. 2 and it is inferred that
the trajectory converges to the desired values in finite

Fig. 2 Time trajectory of
an UAV tracking the desired
trajectory, bd
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Fig. 3 Attitude and angular velocity error for the helical maneuver of an UAV
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time and remains stable for all time, t > 0. The atti-
tude tracking error given by the principal angle, �

converges in finite time which indicates that R tracks
Rd as shown in Fig. 3a. The angular velocity error is
plotted in Fig. 3b, and it is shown to converge to a
small bounded neighborhood of the origin. The posi-
tion and velocity tracking response of the control law
given by Eq. 18 is shown in Fig. 4. The stable position
tracking performance is shown in Fig. 4a and b, which
show the position tracking errors converging to zero
and therefore the control scheme presented here tracks
the position and remains stable even with the large ini-
tial position error. The control scheme also ensures the
UAV tracks the translation velocity as shown in Fig. 4b
and d. The control efforts are shown to be within
reasonable bounds and practically achievable for mul-
tirotor UAVs. The total magnitude of the thrust force is
less than 50 Newtons as shown in Fig. 5a and the cor-
responding control torque is shown in Fig. 5b; these
control inputs are reasonable and within the capabil-
ities of the four propellers of the UAV as given by
Eq. 44. From the simulation results, it can be inferred
that the integrated guidance and control scheme takes
the UAV from an initial pose to a desired final pose in
SE(3) and the overall feedback system is stable.

7 Conclusion

An integrated trajectory generation and feedback
tracking control scheme for a rigid body with one
actuated translational degree of freedom and all three
rotational degrees of freedom actuated, is presented
here. This scheme is based on generating a trajectory
for the translational motion based on given waypoints
in an inertial coordinate frame, and then obtaining the
desired control force vector to asymptotically stabi-
lize the desired translational motion trajectory. This
desired control force vector direction is then used to
generate a desired attitude trajectory. To track this
desired attitude trajectory, a finite-time stable attitude
tracking scheme is developed and used. The overall
(integrated) trajectory generation and control scheme
is simulated numerically, using a Lie group varia-
tional integrator to discretize this scheme for computer
implementation. These numerical results show the
stable performance of this integrated guidance and
trajectory tracking control scheme. Future work will

look at robustness to disturbance inputs acting on the
dynamics and finite-time stability of the translational
motion tracking scheme.
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